Abstract:
An integrating sphere photometer spectral response measurement method and system. The system comprises an integrating sphere photometer and three or more reference light sources having different peak wavelengths. The integrating sphere photometer consists of an integrating sphere (1) and a broadband photodetector (2), and the broadband photodetector (2) is mounted on the sphere wall of the integrating sphere (1). Emergent light of the reference light sources is incident to the integrating sphere (1); the total spectral radiation flux Pi(λ) (i=1, 2, . . . n) received by an integrating sphere photometer system is acquired; the response Mi (i=1, 2, . . . n) of a photometer of mixed light in the integrating sphere (1) is read by means of the broadband photodetector (2); an equation set is established; and the spectral responsivity Srel(λ) of the integrating sphere photometer is obtained by means of numerical solution.
Abstract:
FCIS based-LEMCS designed in this invention accomplishes both of the above proficiencies of measuring the averaged pulse energy of the Pulsed Type Laser Source and calibrating the Commercial Laser Energy Meters, which are traceably to primary level standards, FCIS based-LEMCS contains an integrating sphere having a novel port and an interior design and a series of mechanical choppers having separate Duty Cycles, each of which is rotated by an electrical motor in FCIS based-LEMCS, used for generating a chopped type laser, called as Chopped Type Laser Source, in order to provide the reference and averaged pulse energy for traceable calibration of Commercial Laser Energy Meters.
Abstract:
A light measuring system including an integrating sphere having an aperture configured by opposing reflectors selectively aligned with complementary reflectors of at least one light source mounting block having a light source mounting region for mounting a light source thereon.
Abstract:
Method of generating a correction function for a light-emitting diode (LED) testing process, including: detecting light emitted by a reference LED and reflected from inactive LEDs on a panel within a field of view of a detector; varying a number of the inactive LEDs to derive uncorrected values of an optical parameter as a function of the number of inactive LEDs; detecting light emitted by the reference LED, or by an active LED having identical optical properties, in the absence of any other LEDs, to determine at least one reference value for each optical parameter; and calculating differences between the uncorrected values and each reference value to generate the correction function, the correction function being based on the number of inactive LEDs which are arranged within the field of view of the detector in the light detecting step.
Abstract:
A visible LED light scattering apparatus comprising a substantially hollow spherical cavity including a light entry port arranged to receive visible light from an LED mounted outside the cavity, a light exit port located opposite the entry port and through which the LED light exits the cavity for analysis, and a baffle located in a central region of the cavity in a direct optical path between the entry port and the exit port to interrupt the passage of visible LED light between the entry and exit ports.
Abstract:
Systems and methods for accurately measuring the luminous flux and color (spectra) from light-emitting devices are disclosed. An integrating sphere may be utilized to directly receive a first portion of light emitted by a light-emitting device through an opening defined on the integrating sphere. A light collector may be utilized to collect a second portion of light emitted by the light-emitting device and direct the second portion of light into the integrating sphere through the opening defined on the integrating sphere. A spectrometer may be utilized to measure at least one property of the first portion and the second portion of light received by the integrating sphere.
Abstract:
The invention features devices and methods for collecting and measuring light from external light sources. In general, the devices of the invention feature a light diffusing element, e.g., as a component of a light collector, connected by a light conducting conduit, e.g., a fiber optic cable, to a light measuring device, e.g., a spectrometer. This light diffusing element allows, e.g., for substantially uniform light diffusion across its surface and thus accurate measurements, while permitting the total footprint of the device to remain relatively small and portable. This light diffusing element also allows flexibility in scaling of the device to permit use in a wide range of applications.