Abstract:
A detector of terahertz (THz) energy includes a MOSFET having an extended source region, and a channel region depleted of free carriers, which MOSFET operates in a sub-threshold voltage state and has an output that is an exponential function of THz energy supplied to the gate.
Abstract:
A bolometer is described. A bolometer includes a superconductor-insulator-semiconductor-superconductor structure or a superconductor-insulator-semiconductor-insulator-superconductor structure. The semiconductor comprises an electron gas in a layer of silicon, germanium or silicon-germanium alloy in which valley degeneracy is at least partially lifted. The insulator or a one or both of the insulators may comprise a layer of dielectric material. The insulator or a one or both of the insulators may comprise a layer of non-degenerately doped semiconductor.
Abstract:
A system, for calculating an object location within a portal, includes a portal map formed by a plurality of infra-red beams. The system further includes a broken beam detector for detecting and recording, in response to an object moving through the portal map, data indicative of one or more broken beams of the plurality of infra-red beams. The data includes first data indicative of an initial position of the object within the portal, second data indicative of a subsequent position of the object within the portal, and third data including one or more time records. The system also includes at least one broken beam analyzer for obtaining the data from the broken beam detector, the broken beam analyzer calculating the object location based on at least one of the first data, the second data, and the third data.
Abstract:
Provided is an infrared image pickup device, including: a plurality of bolometer elements that receive light from a subject; and a plurality of readout circuits respectively connected to the plurality of bolometer elements, the plurality of bolometer elements and the plurality of readout circuits being connected to a first input voltage wiring and a second input voltage wiring. Each of the plurality of readout circuits includes: a bias circuit that applies a bias voltage to corresponding one of the plurality of bolometer elements; a bias-canceling circuit that removes an offset current of the corresponding one of the plurality of bolometer elements; an integration circuit connected to a connection point between the bias circuit and the bias-canceling circuit, that integrates a differential current between the bias circuit and the bias-canceling circuit; and a saturation-prevention circuit that prevents saturation of an output voltage of the integration circuit.
Abstract:
A system configured to collect sensor data and compare the sensor data to a first template profile comprising data indicative of an approach of a user or compare the sensor data to a second template profile comprising data indicative of a departure of a user, or a combination thereof to determine whether the sensor data indicates the approach of a user or a departure of a user.
Abstract:
Photothermal imaging systems and methods are disclosed that employ truncated-correlation photothermal coherence tomography (TC-PCT). According to the example methods disclosed herein, photothermal radiation is detected with an infrared camera while exciting a sample with the chirped delivery of incident laser pulses (where the pulses have a fixed width), and time-dependent photothermal signal data is obtained from the infrared camera and processed using a time-evolving filtering method employing cross-correlation truncation. The cross-correlation truncation method results in pulse-compression-linewidth-limited depth-resolved images with axial and lateral resolution well beyond the well-known thermal-diffusion-length-limited, depth-integrated nature of conventional thermographic and thermophotonic modalities. As a consequence, an axially resolved layer-by-layer photothermal image sequence can be obtained, capable of reconstructing three-dimensional visualizations (tomograms) of photothermal features in wide classes of materials. Additional embodiments are disclosed in which the aforementioned systems and methods are adapted to photo-acoustic and acousto-thermal imaging.
Abstract:
A first substrate having an array of emitters or detectors may be joined by bump bonding with a second substrate having read-in (RIIC) or read-out (ROIC) circuitry. After the two substrates are joined, the resulting assembly may be singulated to form sub-arrays such as tiles sub-arrays having pixel elements which may be arranged on a routing layer or carrier to form a larger array. Edge features of the tiles may provide for physical alignment, mechanical attachment and chip-to-chip communication. The pixel elements may be thermal emitter elements for IR image projectors, thermal detector elements for microbolometers, LED-based emitters, or quantum photon detectors such as those found in visible, infrared and ultraviolet FPAs (focal plane arrays), and the like.
Abstract:
A thermal imaging system with a vacuum-sealing lens cap, includes (a) a thermal image sensor having an array of temperature sensitive pixels for detecting thermal radiation, and (b) a lens sealed to the thermal image sensor for imaging thermal radiation from a scene onto the array of temperature sensitive pixels and sealing a vacuum around the temperature sensitive pixels. A wafer-level method for manufacturing a thermal imaging system with a vacuum-sealing lens cap includes sealing a lens wafer, having a plurality of lenses, to a sensor wafer having a plurality of thermal image sensors each having an array of temperature sensitive pixels, to seal, for each of the plurality of thermal image sensors, a vacuum around the temperature sensitive pixels.
Abstract:
This invention provides a device and method for selecting thermal images, which relates to infrared thermal imaging detection. The conventional thermal imaging device is excessively dependent on subjective experience of users to photograph a thermal image of a body, causing great workload and failing to ensure the quality of the thermal image. In the invention, specified information of a specified body thermal image can be automatically detected from the acquired thermal imaging data frame, or auxiliary information is considered. Thus, the thermal imaging data frame satisfying a specified condition can be automatically selected, thereby facilitating subsequent processing or operation, such as inform, analysis, or storage, simplifying photographing operation, and improving the photographing speed and the quality of the thermal image.
Abstract:
Apparatus and method for thermally mapping a component in a high temperature environment. An optical probe (10) has a field of view (14) arranged to encompass a surface of a component (15) to be mapped. The probe (10) captures infrared (IR) emissions in the near or mid IR band. An optical fiber (16) has a field of view to encompass a spot location (18) on the surface of the component within the field of view (14) of the probe (12). The fiber (16) captures emissions in the long IR band. The emissions in the long IR band are indicative of an emittance value at the spot location. This information may be used to calibrate a radiance map of the component generated from the emissions in the near or mid IR band and thus map the absolute temperature of the component regardless of whether the component includes a TBC.