Abstract:
A positron producing apparatus which includes a vacuum chamber with a source of positrons to be supplied into the vacuum chamber forming a positron cloud within a Penning Trap. The positron cloud is to be compressed producing a thin positron beam which is extracted from the cloud and is smaller in cross-sectional area than the cloud. The positron beam is to be transmitted to a focusing apparatus which transmits the positron beam onto a solid target. The vacuum chamber is to include a cooling gas to be supplied into the vacuum chamber and a compressing device for the positron cloud is to include a rotating electric field. A method for compressing the positron cloud to produce a thin positron beam, which is to be transmitted to a solid for the purpose of analyzing properties of the solid, comprises the steps of supplying a source of positrons within a vacuum environment, forming and containing the positron cloud within a Penning Trap, producing a positron beam, and focusing of that positron beam onto a solid. The method is also to include adding of a cooling gas within the vacuum environment.
Abstract:
A scanning electron microscope system with an electrostatic magnetic field complex objective lens, comprising at least two or more deflection means for tilting a primary electron beam and for projecting the primary electron beam onto a specimen, wherein one of the deflection means is arranged near the objective lens so as to generate a deflection field and also to serve as a compensation field for compensating abaxial aberration at the same time, and abaxial aberration of the primary electron beam deflected by the deflection means is compensated.
Abstract:
An improved electrode device for generating a glow discharge plasma is provided for the purpose of cleaning the specimen and interior specimen chamber of Electron Microscopes, and similar electron beam instruments. The electrode is a cylindrical screen that produces multiple hollow cathodes and allows the flow of molecules, radicals, and ions by convection through it. The electrode is used in a glow-discharge, oxygen-radical generator placed on a specimen chamber port with an excitation source to create a low-power glow-discharge plasma inside the generator. Air or other oxygen and nitrogen mixture is admitted to the generator at a pressure between 0.3 Torr and 5 Torr. The low power glow discharge is used to disassociate oxygen preferentially over nitrogen to create the oxygen radicals. The oxygen radicals then disperse by convection throughout the chamber to clean hydrocarbons from the surfaces of the chamber, stage and specimen by oxidation to CO and H2O gases. The excitation power of the plasma is limited to limit the nitrogen ion production that destroys the oxygen radicals and to limit the projection of the electrically active plasma into the specimen chamber
Abstract:
Disclosed are lens apparatus in which a beam of charged particles is brought to a focus by means of a magnetic field, the lens being situated behind the target position. In illustrative embodiments, a lens apparatus is employed in a scanning electron microscope as the sole lens for high-resolution focusing of an electron beam, and in particular, an electron beam having an accelerating voltage of from about 10 to about 30,000 V. In one embodiment, the lens apparatus comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. In other embodiments, the lens apparatus comprises a magnetic dipole or virtual magnetic monopole fabricated from a variety of materials, including permanent magnets, superconducting coils, and magnetizable spheres and needles contained within an energy-conducting coil. Multiple-array lens apparatus are also disclosed for simultaneous and/or consecutive imaging of multiple images on single or multiple specimens. The invention further provides apparatus, methods, and devices useful in focusing charged particle beams for lithographic processes.
Abstract:
A pattern inspection method in which an image can be detected without an image detection error due to an adverse effect to be given by such factors as ions implanted in a wafer, pattern connection/no-connection, and pattern edge formation. A digital image of an object substrate is attained through microscopic observation thereof, the attained digital image is examined to detect defects while masking a region pre-registered in terms of coordinates or while masking a pattern meeting a pre-registered pattern, and an image of each of the defects thus detected is displayed. Further, each of the defects detected using the digital image attained through microscopic observation is checked to judge whether its feature meets a pre-registered feature or not. Defects having a feature that meets the pre-registered feature are so displayed that they can be turned/off, or they are so displayed as to be distinguishable from the other defects.
Abstract:
A transmission electron microscopy (TEM) or scanning electron microscopy (SEM) sample preparation method includes the steps of depositing a metal layer on top of a substrate, depositing a silicon nitride passivation layer on top of the metal layer, and cutting the substrate and the metal and passivation layers to expose their cross-sections for examination by electron microscopy. As a result, a TEM/SEM sample having sharp, well-defined boundaries is produced.
Abstract:
An optical observing apparatus has a sample stage for moving a sample to a desired location to be operated upon at a target position by a charged particle beam apparatus so that the target position can be visually observed, an optical observation system for magnifying the sample for visual observation of the target position, a marking system for moving the sample based on the visual observation and marking the sample at one or more locations from which the target position can be determined without the need for further visual observation so that the target position may be located by the charged particle beam apparatus even when the target position can not be visually observed by use of the charged particle beam apparatus, and a control system for storing the target position and the location of the one or more markings together with an optical observation image and corresponding stage coordinate. In a preferred embodiment, the marking system is a laser marking system for producing a plurality of laser beams on the same optical axis, each having a different wavelength, so that an appropriate laser beam may be selected based upon the nature of the sample. The sample has an underlying structure covered by a layer of transparent material, so that the underlying structure can be visually observed by means of the optical observation system but cannot be observed by use of the charged particle beam apparatus.
Abstract:
A particle beam apparatus that can be used, in particular in an electron microscope, has a dispersively imaging energy filter in the illumination beam path. A higher energy sharpness of the particles contributing to the further particle-optic imaging, and hence a reduction of the effect of chromatic aberrations, is attained by means of the energy filter. So that voltage fluctuations of the applied high voltage also bring about no drift of the image of the beam producer in spite of the dispersion present after complete passage through the filter, the beam producer is imaged, enlarged, in a plane of the filter that is imaged achromatically by the filter into an output image plane. Because of the high dispersion of the dispersive filter as against non-dispersive filters, the particle beam apparatus can be operated at a higher particle energy within the filter, so that the influence of the Boersch effect is reduced in comparison with non-dispersive filters.
Abstract:
Disclosed are lens apparatus in which a beam of charged particlesis brought to a focus by means of a magnetic field, the lens being situated behind the target position. In illustrative embodiments, a lens apparatus is employed in a scanning electron microscopeas the sole lens for high-resolution focusing of an electron beam, and in particular, an electron beam having an accelerating voltage of from about 10 to about 30,000 V. In one embodiment, the lens apparatus comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. In other embodiments, the lens apparatus comprises a magnetic dipole or virtual magnetic monopole fabricated from a variety of materials, including permanent magnets, superconducting coils, and magnetizable spheres and needles contained within an energy-conducting coil. Multiple-array lens apparatus are also disclosed for simultaneous and/or consecutive imaging of multiple images on single or multiple specimens. The invention further provides apparatus, methods, and devices useful in focusing charged particle beams for lithographic processes.
Abstract:
An high resolution electron beam observation instrument has an electron beam source, an electron beam optical system for converging the electron beam and scanning the electron beam across the surface of a sample, and a compound magnetic and electrostatic objective lens comprising a single pole magnetic lens having a single magnetic pole portion disposed between the electron beam source and the sample and an electrostatic immersion lens, the electrostatic immersion lens comprising an upper electrode and a lower electrode, one end of the upper electrode extending between the single magnetic pole portion and the sample, and the lower electrode being disposed between the upper electrode and the sample; wherein a deceleration electric field is generated between the upper electrode and the lower electrode to allow high resolution observation of the sample. The upper electrode may comprise the single magnetic pole portion of the single pole magnetic lens, or one or more seperate electrodes. The single pole magnetic lens has a conical shaped portion extending between the single magnetic pole portion and the electron beam source. A potential applied to the sample differs from a potential applied to the lower electrode when the sample is not inclined and a difference between the potentials of the sample and the lower electrode is reduced, or the potentials are made equal to each other when the sample is inclined by the sample inclining means.