Abstract:
A system and method of making an apparatus for managing heat distribution in an oscillator system is disclosed. In an example embodiment, the apparatus includes a resonator configured to provide a periodic signal, a circuit coupled to the resonator configured to compensate for changes in the periodic signal due to variation in temperature, and further includes a heat source configured to generate heat that heats the resonator and the circuit. At least one of the resonator, circuit, and heat source is embedded in a substrate, and the resonator, circuit, and heat source are arranged to heat the resonator and circuit substantially the same amount.
Abstract:
Disclosed is a wiring substrate that is provided with a wiring pattern formed from a metal plate, and an insulation layer as a base material to which the wiring pattern is to be fixed. The wiring pattern has a mounting pad for having electronic parts (11) surface-mounted. Electronic parts are mounted onto the surface of the wiring pattern, by pouring solder into the mounting pad of the wiring pattern.
Abstract:
An electronic card that includes at least two superimposed conducting layers with an insulation layer between the two conducting layers, the two conducting layers each including a utility conducting portion and a conducting portion at the periphery of the utility conducting portion with an insulating portion between the conducting portions, the insulating portion of a first of the two layers being offset relative to the insulating portion of the second of the layers. An aircraft includes a housing in which at least one such card is provided.
Abstract:
A touch sensor device is provided that uses a flexible circuit substrate to provide an improved input device. Specifically, the present invention uses a touch sensor controller affixed to the flexible circuit substrate, which is coupled to a sensor component to provide a flexible, reliable and cost effective touch sensor suitable for a wide variety of applications. In one embodiment the touch sensor uses a flexible circuit substrate that provides relatively high temperature resistance. This allows the touch sensor controller to be affixed using reliable techniques, such as various types of soldering. The sensor component can comprise a relatively low-temperature-resistant substrate that can provide a cost effective solution. Taken together, this embodiment of the touch sensor provides reliability and flexibility at relatively low cost.
Abstract:
The present invention relates to a heat dissipation structure board and a module using this heat dissipation structure used for purpose required of high reliability such as a hybrid vehicle or an electric vehicle and to a method of manufacturing the heat dissipation structure. A resin structure is disposed on a lead frame constituting a heat dissipation board and an odd-shaped electronic component or the like mounted on this lead frame or the like to cover up the lead frame and the odd-shaped electronic component or the like, and this resin structure is fixed to a metal plate, a chassis of a device and the like to constitute the heat dissipation structure board as a whole, whereby fixing strengths of fixing the lead frame and the odd-shaped electronic component or the like, a bonding strength at an interface between the lead frame and the heat transfer layer and the like can be reinforced.
Abstract:
A circuit board includes a main body, an electronic component, a fixing portion and at least one via hole. The electronic component and the fixing portion are disposed on the main body. The at least one via hole is formed on the main body and adjacent to the fixing portion.
Abstract:
An integrated circuit module with temperature compensation crystal oscillator (TCXO) applying to an electronic device comprises: one substrate having one top surface; one temperature compensation crystal oscillator (TCXO) disposed on the top surface; at least one chip disposed on the top surface; one encapsulating piece formed on the top surface for covering the TCXO and the chip. As above-described structure, TCXO is prevented from exchanging heat due to the temperature difference so that the stability of the TCXO is improved.
Abstract:
The temperature of shelves used in a food holding cabinet are measured using a transistor. The voltage across a PN junction being known to be temperature dependent, the shelf temperature can be inferred from a calculated temperature of a PN junction of a transistor thermally coupled to a heated or refrigerated shelf. No calibration of the measurement device is required since the PN junction voltage, current and temperature relationship is well known.
Abstract:
Disclosed are a secondary battery and a circuit board assembly suitable for the secondary battery. The secondary battery includes a bare cell including an electrode terminal, a circuit board electrically connected to the electrode terminal and arranged on a top surface of the bare cell. The circuit board includes an installation part having a smaller thickness than rest of the circuit board. The secondary battery further includes a temperature device installed on the installation part of the circuit board to sense temperature variation of the bare cell.
Abstract:
A power device package controls heat generation of a power device using a semi-permanent metal-insulator transition (MIT) device instead of a fuse, and emits heat generated by the power device through a small-sized heat sink provided only in one region on the power device, thereby ensuring excellent dissipation of heat. Therefore, the power device package can be usefully applied to any electric/electronic circuit that uses a power device.