Abstract:
A method 10, 110 for making multi-layer circuit boards having metallized apertures 38, 40, 130, 132 which may be selectively and electrically grounded and having at least one formed air-bridge 92, 178.
Abstract:
A multi-layer electronic circuit board design 10 having selectively formed apertures or cavities 26, and which includes grooves or troughs 20, 22 which are effective to selectively entrap liquefied adhesive material, thereby substantially preventing the adhesive material from entering the apertures 26.
Abstract:
Spring contact elements having a base end portion, a contact end portion, and a central body portion. In a first embodiment, the spring contact elements provide for movement of a majority of the spring contact element characterized by a first spring constant. As the force and deflection increase, the movement of a rearward portion of the spring contact element will stop when a portion of the contact element abuts a portion of its mounting member while the movement of a forward portion will continue with a second and different spring constant. In a second embodiment, the spring contact elements include additional conductive and insulating layers formed about the contact element for controlling the impedance of the spring contact element throughout its range of motion. The additional conductive layer may be connected to ground. The spring contact elements may, in turn, be mounted on an electronic component, such as a space transformer or a semiconductor device to form a probe card assembly for effecting highly uniform pressure connections to corresponding terminals on another electronic component.
Abstract:
A method 10, 110 for making multi-layer electronic circuit boards 82, 148 having metallized apertures 18, 20, 118, 120 which may be selectively and electrically connected to a source of ground potential.
Abstract:
A head interconnect circuit for connecting transducer elements of a data head to drive circuitry including an alignment finger on a lead tip for aligning leads relative to connectors or solder pads for electrically connecting heads to drive circuitry. A method for connecting a head interconnect circuit to a printed circuit supported on an head actuator including aligning an alignment finger on the lead tip with a printed surface of a drive circuit for soldering leads on the lead tip to solder pads or connectors on the drive circuit.
Abstract:
An electrical connection box is provided for a vehicle which has a low-voltage battery of maximum output voltage selected from 14V and 28V, and a high-voltage battery of output voltage higher than that of said first battery structure. The electrical connection box has an insulation plate and, fixed on one face of said insulation plate, first bus bars connected in use to the first battery and second bus bars connected in use to the second battery so that the first and second bus bars are at different potentials. In order to reduce a risk of electrical leakage paths on the insulation plate, at least one of the following features is present: (i) the first bus bars and the second bus bars are separated on the face of the insulation plate by an air insulation zone of width in the range of from about 1 mm to about 30 mm, (ii) an insulation wall stands up on the insulation plate between the first bus bars and the second bus bars, (iii) the second bus bars are embedded in the insulating material.
Abstract:
Solder pads for microelectronic connections are formed with a set of solder-wettable strips extending radially outwardly from a central point. A solid core solder ball is positioned on each pad and reflowed. The pad configuration helps to center the solder ball and keeps the solder ball down in the desired position thereby minimizing variations in height of the resulting solder bumps. Also, the solder pad may include non-wettable surfaces defined by a non-wettable metal, a metal compound or a dielectric material. The non-wettable areas on the pad confine the solder and avoid the need for a separate solder mask.
Abstract:
A method 10, 90 for making a multi-layer electronic circuit board 82, 168 including the steps of forming at least one protuberance 15, 100 upon an electrically conductive member 12, 92 and adding additional electrically conductive layers of material 34, 56, 58, 104, 114, 138, 140 to the member 12, 92 while selectively extending the protuberance 15, 100 within the layers 82, 168, thereby forming a circuit board 82, 168. A portion of the formed circuit board may be etched in order to selectively create air-bridges 86 or interconnection portions 164.
Abstract:
A head interconnect circuit for connecting transducer elements of a data head to drive circuitry including an alignment finger on a lead tip for aligning leads relative to connectors or solder pads for electrically connecting heads to drive circuitry. A method for connecting a head interconnect circuit to a printed circuit supported on an head actuator including aligning an alignment finger on the lead tip with a printed surface of a drive circuit for soldering leads on the lead tip to solder pads or connectors on the drive circuit.
Abstract:
A packaged semiconductor chip including the chip, and a package element such as a heat sink is made by connecting flexible leads between contacts on the chip and terminals on a dielectric element such as a sheet or plate and moving the sheet or plate away from the chip, and injecting a liquid material to form a compliant layer filling the space between the package element and the dielectric element, and surrounding the leads. The dielectric element and package element extend outwardly beyond the edges of the chip, and physically protect the chip. The assembly may be handled and mounted by conventional surface mounting techniques. The assembly may include additional circuit elements such as capacitors used in conjunction with the chip.