Abstract:
An assembly of substrate packages interconnected with flex cables and a method of fabrication of the substrate package. The assembly allows input/output (I/O) signals to be speedily transmitted between substrate packages via flex cable and without being routed through the motherboard. Embodiments relate to a substrate package providing separable inter-package flex cable connection. Hermetically-sealed guiding through holes are provided on the substrate package as a mechanical alignment feature to guide connection between flex cables and high speed I/O contact pads on the substrate package. Embodiments of the method of fabrication relate to simultaneously forming hermetically-sealed guiding through holes and I/O contact pads.
Abstract:
A method of manufacturing a printed wiring board including preparing a high-dielectric capacitor sheet including a ceramic high-dielectric layer sandwiched by upper and lower electrode sheets, attaching the high-dielectric capacitor sheet to a first insulating layer, forming through holes for the upper and lower electrode sheets such that the through holes penetrate through the ceramic high-dielectric layer and upper and lower electrode sheets, forming a second insulating layer which fills the through holes and covers an upper surface of the high-dielectric capacitor sheet, forming an upper electrode connecting first hole, an upper electrode connecting second hole and a lower electrode connecting hole, filling the upper holes with conductive material such that the upper electrode connecting first hole and the upper electrode connecting second hole are connected to form an upper electrode connection portion, and filling the lower electrode connecting hole with conductive material to form a lower electrode connecting portion.
Abstract:
Chip capacitors 20 are provided in a printed circuit board 10. In this manner, the distance between an IC chip 90 and each chip capacitor 20 is shortened, and the loop inductance is reduced. In addition, the chip capacitors 20 are accommodated in a core substrate 30 having a large thickness. Therefore, the thickness of the printed circuit board does not become large.
Abstract:
An electroplating process of electroplating an electrically conductive substrate is described. The process includes electroplating intermittently to a predetermined plating thickness using the substrate surface as a cathode and a plating metal as an anode at a constant voltage between the anode and the cathode by repeating application of a voltage between a cathode and an anode and interruption of the application alternately. It is described that a voltage time/interruption time ratio is 0.1 to 1.0, a voltage time is not longer than 10 seconds, and an interruption time is not less than 1 x 10-12 seconds.
Abstract:
A manufacturing process for an embedded semiconductor device is provided. In the manufacturing process, at least one insulation layer and a substrate are stacked to each other, and a third metal layer is laminated on the insulation layer to embed a semiconductor device in the insulation layer. The substrate has a base, a first circuit layer, a second circuit layer, and at least a first conductive structure passing through the base and electrically connected to the first circuit layer and the second circuit layer. In addition, the third metal layer is patterned to form a third circuit layer having a plurality of third pads.
Abstract:
In one embodiment of the present invention, a connecting device of a double-sided wiring board includes a first-side connecting land portion configured by a first-side conductive layer and a first-side connecting conductive layer and a second-side connecting land portion configured by a second-side conductive layer; the first-side connecting land portion and the second-side connecting land portion face each other at respective central portions with an insulating substrate sandwiched therebetween; a substrate hole is formed corresponding to a peripheral end portion of the first-side connecting land portion and a peripheral end portion of the second-side connecting land portion; and the peripheral end portion of the first-side connecting land portion and the peripheral end portion of the second-side connecting land portion are connected to each other via the substrate hole.
Abstract:
A dielectric structure including a metal foil, a dielectric layer and a conductor layer provided in this order, wherein the metal foil has a thickness of from 10 to 40 μm, the dielectric layer has a thickness of from 0.3 to 5 μm, and the conductor layer has a thickness of from 0.3 to 10 μm. The dielectric structure has plural vias which are separated from each other, and which penetrate through both of the dielectric layer and the conductor layer. The vias of the dielectric layer have different diameters which are in a range of from 100 to 300 μm, a diameter of each of the vias of the conductor layer is larger than a diameter of a corresponding via of the dielectric layer by 5 to 50 μm, and a minimum via pitch is from 100 to 350 μm.
Abstract:
A printed circuit board including a core substrate including a first resin substrate, a second resin substrate having an opening and a third resin substrate in a multilayer manner while interposing bonding plates, insulating layers and conductive circuit layers alternately laminated on the core substrate, solder bumps formed on an outer surface of the printed circuit board, a first capacitor formed in the opening of the second resin substrate, a conductive pad formed on the first resin substrate and connected to an electrode of the first capacitor, a via hole formed in the first resin substrate and directly connected to the conductive pad and a conductive circuit on the core substrate, and a second capacitor mounted on a surface of the printed circuit board.
Abstract:
A multi-layered interconnect structure and method of formation. In a first embodiment, first and second liquid crystal polymer (LCP) dielectric layers are directly bonded, respectively, to first and second opposing surface of a thermally conductive layer, with no extrinsic adhesive material bonding the thermally conductive layer with either the first or second LCP dielectric layer. In a second embodiment, first and second 2S1P substructures are directly bonded, respectively, to first and second opposing surfaces of a LCP dielectric joining layer, with no extrinsic adhesive material bonding the LCP dielectric joining layer with either the first or second 2S1P substructures.
Abstract:
A wiring board including a substrate, an electronic component having an electrode and arranged inside the substrate, and a wiring layer formed over the substrate and connected to the electrode through a via hole. The electrode has a connection surface portion contacting the via hole, and the connection surface portion has a thickness which is made thinner than a thickness of the electrode surrounding the connection surface portion.