Abstract:
The present invention relates to a portable illumination device (100) for illuminating an object (200) through a medium having an absorption coefficient, the illumination device (100) comprising a lighting unit (101) including at least two differently colored light sources (Li-L3) for emitting light having a color distribution, and a control unit (105) for adjusting the color distribution. The control unit (105) is adapted to receive a distance estimate corresponding to the distance between the illumination device (100) and the object (200), and adjust the color distribution depending on the distance estimate, such that light reflected from the object is perceived to have substantially correct color reproduction. An advantage with the invention is that an object (200) illuminated through a medium will be perceived by a user using the portable illumination device (100) as having a substantially correct color reproduction.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems. Improved shade matching/prediction results are obtained through the use of volumes/regions, preferably polygons, around shades in a shade system.
Abstract:
A spectrometric measurement apparatus comprises a collimator (401), a first diffractive grating (403), a second diffractive grating (404), and a detector arrangement (407). Incident radiation (402) from the collimator (401) is diffracted to the detector arrangement (407) either directly or through mirrors so that the first (403) and second (404) diffractive gratings diffract different wavelength ranges.
Abstract:
An integrated spectral sensing engine featuring energy sources and detectors within a single package includes sample interfacing optics and acquisition and processing electronics. The miniaturized sensor is optimized for specific laboratory and field-based measurements by integration into a handheld format. Design and fabrication components support high volume manufacturing. Spectral selectivity is provided by either continuous variable optical filters or filter matrix devices. The sensor's response covers the range from 200 nm to 25 μm based on various solid-state detectors. The wavelength range can be extended by the use of filter-matrix devices. Measurement modes include transmittance/absorbance, turbidity (light scattering) and fluorescence (emission). On board data processing includes raw data acquisition, data massaging and the output of computed results. Sensor applications include water and environmental, food and beverage, chemical and petroleum, and medical analyses. These can be expanded into various field and consumer-based applications.
Abstract:
Multiple energy sources, such as a laser and electrical current, are employed, in close coordination, spatially and temporally, to clean a sample, vaporize its material and excite vapor atoms for the purpose of atomic emission spectroscopy. These methods permit better monitoring and control of the individual processes in real time, lead to higher consistency and higher quality optical emission spectra, and enhance the measurements of non-conducting solids, liquids and gases. Additionally, a portable instrument is provided with both laser source and spectrometer optically coupled to a hand-holdable unit.
Abstract:
A method determines an alcohol content of liquids that contain at least water and alcohol as well as sugar or similar substances, in the liquid. The liquid is located in an analysis cell is irradiated by an IR-LED light source, which emits infrared radiation with λ=1000-1500 nm. The IR light absorption is measured at least two different wavelengths, and the measurement values are converted into data on the alcohol content of the liquid. The liquid is irradiated with a first IR radiation with a wavelength λ1, where the absorption coefficient of the alcohol, and the absorption coefficient of the water, are identical in magnitude, and with at least a second IR radiation with a wavelength λ2, where the absorption coefficients and are different. The absorption measurement values determined by an IR detector are applied to a calculating unit for the calculation of the alcohol content.
Abstract:
Disclosed herein are Raman probes that include: (a) a first optical fiber for receiving laser excitation light from a light source and transmitting the same; (b) a first filter for receiving light from the first optical fiber and adapted to pass the laser excitation light and to block spurious signals associated with the light; (c) a second filter for receiving light from the first filter and adapted to direct the light toward a specimen; and (d) focusing apparatus for receiving the light from the second filter, focusing the light on the specimen so as to generate the Raman signal, and returning the Raman signal to the second filter. The second filter is further configured so that when the second filter receives the Raman signal from the focusing apparatus, the second filter filters out unwanted laser excitation light before directing the Raman signal to a second optical fiber.
Abstract:
This invention discloses a spectroscopic sensor that is integrated with a mobile communication device, such as a mobile phone. The spectroscopic sensor is capable of measuring the optical spectra of a physical object for purposes of detection, identification, authentication, and real time monitoring. Through the mobile communication device, the obtained spectral information can be transmitted, distributed, collected, and shared by utilizing all the functions of the known or existing wireless communication networks.
Abstract:
The invention relates generally to the field of substance and material detection, inspection, and classification at wavelengths between approximately 200 nm and approximately 1800 nm. In particular, a handheld Enhanced Photoemission Spectroscopy (“EPS”) detection system with a high degree of specificity and accuracy, capable of use at small and substantial standoff distances (e.g., greater than 12 inches) is utilized to identify specific substances (e.g., controlled substances, illegal drugs and explosives, and other substances of which trace detection would be of benefit) and mixtures thereof in order to provide information to officials for identification purposes and assists in determinations related to the legality, hazardous nature and/or disposition decision of such substance(s).
Abstract:
A contamination detector in accordance with one embodiment of the invention includes a plasma generation system operable to direct an atmospheric plasma discharge towards a surface. The contamination detector further includes a light capture system to capture light generated by interaction of the atmospheric plasma discharge with the surface. The light capture system guides the captured light to an optical detection system configured to detect a contaminant.