Abstract:
A disk drive suspension interconnect, and method therefor. The interconnect has a metal grounding layer, a metal conductive layer and an insulative layer between the metal grounding layer and the conductive metal layer. A circuit component such as a slider is electrically connected to the conductive layer along a grounding path from the circuit component and the conductive layer to the metal grounding layer through an aperture in the insulative layer. For improved electrical connection a tie layer is provided through the insulative layer onto the grounding layer in bonding relation with the ground layer. A conductor is deposited onto both the conductive metal layer and the tie layer in conductive metal layer and tie layer bonding relation, and the circuit component is thus bonded to the grounding layer by the conductor.
Abstract:
A circuit device including a multilayer wiring structure having an improved heat radiation performance, and a manufacturing method thereof is provided. A circuit device of the invention includes a first wiring layer and a second wiring layer laminated while interposing a first insulating layer. The first wiring layer is connected to the second wiring layer in a desired position through a connecting portion formed so as to penetrate the first insulating layer. The connecting portion includes a first connecting portion protruding in a thickness direction from the first wiring layer, and a second connecting portion protruding in the thickness direction from the second wiring layer. The first connecting portion and the second connecting portion contact each other at an intermediate portion in the thickness direction of the insulating layer.
Abstract:
A printed circuit board (PCB) having vias for reducing reflections of input signals includes a first signal layer, a second signal layer, one via, an input signal line arranged on the first signal layer, and an output signal line arranged on the second signal layer. The via further includes a drill hole, a first pad, and a second pad. The first pad is electrically connected with the input signal line, and the second pad is electrically connected with the output signal line. An outer diameter of the first pad is smaller than an outer diameter of the second pad.
Abstract:
A semiconductor mounting board 80 is prepared by electrically joining an IC chip 70 via an interposer 60 of high rigidity to external pads 41 and internal pads 43, which are formed on the uppermost surface of a build-up layer 30. When the IC chip 70 generates heat, since pads 41 are positioned away from the center, a large shearing stress is applied to the portions at which pads 41 are joined to the interposer 60 in comparison to the portions at which pads 43 are joined to the interposer 60. Here, pads 41 are formed at substantially flat wiring portions and thus when joined to the interposer 60 by means of solder bumps 51, voids and angled portions, at which stress tends to concentrate, are not formed in the interiors of solder bumps 51. The joining reliability is thus high.
Abstract:
A microelectronic device, a method of fabricating the device, and a system including the device. The device includes: a substrate including a polymer build-up layer, and a passive structure embedded in the substrate. The passive structure includes a top conductive layer overlying the polymer build-up layer, a dielectric layer overlying the top conductive layer, and a bottom conductive layer overlying the dielectric layer. The device further includes a conductive via extending through the polymer build-up layer and electrically insulated from the bottom conductive layer, an insulation material insulating the conductive via from the bottom conductive layer, and a bridging interconnect disposed at a side of the top conductive layer facing away from the dielectric layer, the bridging interconnect electrically connecting the conductive via to the top conductive layer.
Abstract:
An end of a first line and an end of a second line of a first write wiring pattern are arranged on both sides of a third line of a second write wiring pattern. Circular connection portions are provided at the ends of the first line and the second line. In addition, through holes are formed in respective portions of a base insulating layer below the connection portions. Each connection portion comes in contact with a connecting region of a suspension body within the through hole.
Abstract:
A suspension board with circuit includes a conductive pattern, including a slider arranged on a surface side of the suspension board with circuit and mounted with a magnetic head, the magnetic head being electrically connected with the conductive pattern; and a light emitting device arranged on the back surface side of the suspension board with circuit and electrically connected with the conductive pattern, in which the conductive pattern includes a first terminal provided on a surface of the suspension board with circuit and electrically connected with the magnetic head; and a second terminal provided on the back surface of the suspension board with circuit and electrically connected with the light emitting device.
Abstract:
Solder balls, such as, low melt C4 solder balls undergo volume expansion during reflow. Where the solder balls are encapsulated, expansion pressure can cause damage to device integrity. A volume expansion region in the semiconductor chip substrate beneath each of the solder balls accommodates volume expansion. Air-cushioned diaphgrams, deformable materials and non-wettable surfaces may be used to permit return of the solder during cooling to its original site. A porous medium with voids sufficient to accommodate expansion may also be used.
Abstract:
The present invention is directed to a process for manufacturing multilayer printed circuit boards which is capable of simultaneous via hole filling and formation of conductor circuit and via holes of good crystallinity, and by which uniform deposition can be constructed on a substrate and high-density wiring and highly reliable conductor connections can be realized without annealing.
Abstract:
Provided are a package structure and a package substrate, including: a substrate body having a plurality of matrix-arranged electrical contact pads formed on at least one surface thereof, wherein a solder mask layer is formed on said surface and has a plurality of openings for exposing the electrical contact pads, respectively; a first electroless-plated layer disposed on the electrical contact pads, on the walls of the openings and at the peripheries of the openings; and a second electroless-plated layer disposed on the first electroless-plated layer, the first and second electroless-plated layers constituting a recessed electrical connection structure. By forming the even electroless-plated layers on the electrical contact pads. The invention overcomes drawbacks of the prior art, namely breakage of interfaces between solder bumps and electrical contact pads and even damage of the package structure otherwise caused by excessive differences in stress between the solder bumps.