Abstract:
An electrical assembly which has a multi-layer conformal coating on at least one surface of the electrical assembly, wherein each layer of the multi-layer coating is obtainable by plasma deposition of a precursor mixture comprising (a) one or more organosilicon compounds, (b) optionally O2, N2O, NO2, H2, NH3, N2, SiF4 and/or hexafluoropropylene (HFP), and (c) optionally He, Ar and/or Kr. The chemistry of the resulting plasma-deposited material chemistry can be described by the general formula: SiOxHyCzFaNb. The properties of the conformal coating are tailored by tuning the values of x, y, z, a and b.
Abstract:
An electronic patch includes a foldable circuit layer that includes a foldable network that includes comprising: a plurality of electronic modules comprising a plurality of electronic components, and flexible straps that connect the plurality of electronic modules, wherein the flexible straps comprise conductive circuit that are conductively connected with the plurality of electronic components in the plurality of electronic modules. Neighboring electronic modules can undulate in opposite directions normal to the foldable circuit layer. The electronic patch also includes an elastic layer that encloses the foldable circuit layer.
Abstract:
Disclosed are highly scalable fabrication methods for producing electronic circuits, devices, and systems. In one aspect, a fabrication method includes attaching an electronic component at a location on a substrate including a flexible and electrically insulative material; forming a template to encase the electronic component by depositing a material in a phase to conform on the surfaces of the electronic component and the substrate, and causing the material to change to solid form; and producing a circuit or electronic device by forming openings in the substrate to expose conductive portions of the electronic component, creating electrical interconnections coupled to at least some of the conductive portions in a selected arrangement on the substrate, and depositing a layer of an electrically insulative and flexible material over the electrical interconnections on the substrate to form a flexible base of the circuit, in which the produced circuit or electronic device is encased.
Abstract:
An atomic oscillator includes a gas cell and a plurality of components. The plurality of components includes a temperature control device for the gas cell; an excitation light source that emits excitation light to excite atoms enclosed in the gas cell; a temperature control device for the excitation light source; and a light receiving element that detects the excitation light that passes through the gas cell. The plurality of components is mounted on an insulating film having wiring.
Abstract:
An electronic patch includes a foldable circuit layer that includes a foldable network that includes comprising: a plurality of electronic modules comprising a plurality of electronic components, and flexible straps that connect the plurality of electronic modules, wherein the flexible straps comprise conductive circuit that are conductively connected with the plurality of electronic components in the plurality of electronic modules. Neighboring electronic modules can undulate in opposite directions normal to the foldable circuit layer. The electronic patch also includes an elastic layer that encloses the foldable circuit layer.
Abstract:
The invention provides processes for the manufacture of conductive transparent films and electronic or optoelectronic devices comprising same.
Abstract:
Heat dissipation resources are allocated in an optical communications module based on the sensitivity of electrical and optoelectronic components of the module to temperature. Components that have a higher sensitivity to temperature are allocated a greater proportion of available heat dissipation resources than components that have a lower sensitivity to temperature. In addition, heat dissipation resources that are allocated to components that have different sensitivities to temperature are thermally decoupled from one another.
Abstract:
Embodiments of a method for fabricating System-in-Packages (SiPs) are provided, as are embodiments of a SiP. In one embodiment, the method includes producing a first package including a first molded package body having a sidewall. A first leadframe is embedded within the first molded package body and having a first leadframe lead exposed through the sidewall. In certain implementations, a semiconductor die may also be encapsulated within the first molded package body. A Surface Mount Device (SMD) is mounted to the sidewall of the first molded package body such that a first terminal of the SMD is in ohmic contact with the first leadframe lead exposed through the sidewall.
Abstract:
Disclosed are a solar junction box and a wire connecting structure of the solar junction box. The solar junction box includes plural first conductive tongues separately and perpendicularly plugged onto a printed circuit board, plural solar panel conducting plates combined to the first conductive tongues, and each solar panel conducting plate including an extension plate connected to a solar panel and a U-shaped snap-in plate bent and extended from the extension plate, and each U-shaped snap-in plate being snapped onto each first conductive tongue, plural insulators sheathed on the solar panel conducting plates, a pair of second conductive tongues separately and flatly attached onto a side of the printed circuit board, and two conducting terminals electrically connected to the pair of second conductive tongues. With the installation of the wire connecting structure, the volume of the solar junction box can be reduced to provide a stable electrical connection.
Abstract:
A power semiconductor module comprising internal load and auxiliary connection devices embodied as wire bonding connections. A substrate has a plurality of load and auxiliary potential areas, wherein a power switch is arranged on a first load potential area, said power switch being embodied as a plurality of controllable power subswitches arranged in series. The power subswitches have a load bonding connection consisting of a plurality of load bonding wires to a second load potential area, wherein a first bonding base is arranged on the second load potential area and an adjacent second bonding base of the respective load bonding wire is arranged on a contact area of the power subswitch.