Abstract:
An LED light core structure, which has better mechanical strength and good heat dissipation effect and is able to 360-degree project light. The LED light core structure includes a substrate having at least two faces. The substrate is formed with at least one opening communicating the two faces. LEDs are disposed on at least one of the two faces of the substrate at the opening, whereby the light emitted from the LEDs disposed on one of the two faces of the substrate can be projected through the opening to the opposite face of the substrate. Accordingly, the substrate can be made of metal material, whereby the substrate is unlikely to crack so that the ratio of good products is increased and the substrate can provide excellent heat dissipation effect for the LEDs. The conventional wolfram filament electrodes can be directly replaced with the LED light core structure.
Abstract:
A semiconductor apparatus includes a semiconductor device, on-semiconductor-device metal pad and metal interconnect each electrically connected to the semiconductor device, a through electrode and a solder bump each electrically connected to the metal interconnect, a first insulating layer on which the semiconductor device is placed, a second insulating layer formed on the semiconductor device, a third insulating layer formed on the second layer. The metal interconnect is electrically connected to the semiconductor device via the on-semiconductor-device metal pad at an upper surface of the second layer, penetrates the second layer from its upper surface, and is electrically connected to the through electrode at an lower surface of the second layer, and an under-semiconductor-device metal interconnect is between the first layer and the semiconductor device, and the under-semiconductor-device metal interconnect is electrically connected to the metal interconnect at the lower surface of the second layer.
Abstract:
The long sides of a rectangular control chip and the long sides of a rectangular memory chip are arranged parallel with first sides of the upper surface of a wiring substrate in a BGA. A lid includes a pair of first brims and a pair of second brims, the widths of the second brims are formed wider than those of the first brims, and a mounting area for mounting chip parts and a junction base area for joining the lid are secured outside the short sides of the control chip mounted on the upper surface of the wiring substrate and outside the short sides of the memory chip mounted on the upper surface of the wiring substrate, which enables the wide-width second brims of the lid to be disposed on the junction base area. Hence, the mounting area of the BGA can be reduced.
Abstract:
A method includes forming a multi-stacked electronic device having two or more electronic components, each of the electronic components includes a leadframe, the leadframes of each electronic component are physically joined together using a non-solder metal joining process to form a joint, and the joint is located outside a solder connection region.
Abstract:
A composite electronic component includes a capacitor and a resistor stacked in a height direction. The capacitor includes a capacitor body, and first and second external electrodes. The resistor includes a base portion, a resistor, first and second upper surface conductors, first and second lower surface conductors, first connecting conductors, and second connecting conductors. An upper surface of the base portion of the resistor faces a lower surface of the capacitor body of the capacitor, and the first upper surface conductor and the first external electrode are electrically connected, and the second upper surface conductor and the second external electrode are electrically connected.
Abstract:
A battery module and a method of manufacture are provided. The battery module may include a printed circuit board (PCB) assembly. The PCB assembly may include a PCB designed to be disposed in a battery module for controlling operations of the battery module. The PCB may also include voltage sensing circuitry. In addition, the PCB assembly may include a bus bar cell interconnect. The bus bar cell interconnect may electrically couple batteries of the battery module. The PCB assembly may also include a voltage sense connection tab. The voltage sense connection tab may carry a voltage between a bus bar cell interconnect of the battery module and the voltage sensing circuitry on the PCB.
Abstract:
A semiconductor device includes a first circuit board on which a first switching element and a first diode connected in inverse parallel are mounted, a second circuit board on which a second switching element and a second diode connected in inverse parallel are mounted, a printed circuit board disposed opposite the first circuit board and the second circuit board, and a plurality of conductive posts which electrically connect the first switching element, the second switching element, the first diode, the second diode, the first circuit board, or the second circuit board and metal layers of the printed circuit board. The first switching element and the second switching element are connected in anti-series to form a bidirectional switch.
Abstract:
A packaged capacitor component such as a surface mount technology capacitor component may be formed with multiple self-resonant frequencies. The capacitor component may include multiple capacitor portions separated by dielectric layers. The capacitor portions may each be formed from interleaving conductive layers. Additional dielectric layers may be interposed between the interleaving conductive layers. Each capacitor portion may be characterized by a corresponding self-resonance frequency. If desired, a packaged capacitor component having multiple self-resonant frequencies may be formed by stacking multiple surface-mount capacitor components. Each of the stacked surface-mount capacitor components may include interleaving conductive layers that are centered between top and bottom surfaces of that component. Packaged capacitor components having multiple self-resonance frequencies may be used as direct-current blocking capacitors or decoupling capacitors.
Abstract:
An electrical connection is established between a first electrical component and a second electrical component of an assembly and a compression tool is used to apply a compression force to the assembly. The assembly also includes a metallized particle interconnect (MPI) between the first electrical component and the second electrical component and solder components outside a boundary of the MPI and extending from the first electrical component to the second electrical component. The solder components are melted by applying heat to the assembly. The solder components are solidified by cooling the assembly and the compression tool is removed.
Abstract:
Delamination of stacked integrated circuit die configurations on printed circuit boards is avoided by providing a metal trace support structure underneath the die stack. The metal trace support structure features substantially equally spaced thin metal traces in place of a contiguous metal plate which has been used in the past. Spaced apart thin metal traces are less vulnerable to thermal expansion than a metal plate which has a large thermal mass. The metal traces still provide structural stability, while preventing delamination of the die stack configuration during thermal processing. A method of attaching a bridge die stack configuration to a printed circuit board by adhering a die attach film to a field of metal traces is demonstrated. In addition, the electrical and structural integrity of the bridge die stack formed with a metal trace support structure is confirmed with test results.