Abstract:
One ends of a plurality of interface pins are attached to a substrate in a line. Optical semiconductor device and an electric circuit are mounted on this substrate. The other ends of the interface pins are fit into holes in an another substrate. Signals are exchanged between the two substrates via the interface pins. The interface pins are embedded in a dielectric material. A plurality of ground pins and/or ground through holes may be provided in the dielectric material around the interface pins. The dielectric constant of the dielectric material is less than the dielectric constants of the two substrates.
Abstract:
An optical data link 20 comprises a mounting member 22, an optical element assembly 24, a circuit board 26, and a spacer 32. The PGA substrate 22 has a substrate 22a and a plurality of electrically conductive pins 22b. The circuit board 26 has a pair of surfaces. Electronic components 34a to 34c arc mounted on the pair of surfaces. The optical element assembly 24 includes a semiconductor optical element 24f. The semiconductor optical element 24f is connected to an electrically conductive layer on the circuit board 26. The spacer 32 functions so as to distance the circuit board 26 from the PGA substrate 22. Since the circuit board 26 is distanced from the PGA substrate 22, the electronic components 34a to 34e can be mounted on both surfaces of the circuit board 22.
Abstract:
An RF interconnect is incorporated in RF module packages for direct attachment onto a multi-layer PWB using compressible center conductor (fuzz button) interconnects. The module has circuitry operating at microwave frequencies. The module package includes a metal housing including a metal bottom wall structure. The module includes a plurality of RF interconnects, which provide RF interconnection between the package and the PWB. Each interconnect includes a feedthrough center pin protruding through an opening formed in the metal bottom wall, with isolation provided by a dielectric feedthrough insulator. The center pin is surrounded with a ring of shield pins attached to the external surface of the bottom wall of the module housing. The pins are insertable in holes formed in the PWB, and make contact with fuzz button interconnects disposed in the holes. Circuitry connects the fuzz button interconnects to appropriate levels of the PWB for grounding and RF signal conduction.
Abstract:
An apparatus and method for shielding electrical components mounted on a printed circuit board (PCB) from electromagnetic and radio frequency interference by reducing the dissipation of heat away from solder joints. In an embodiment of the invention a radio frequency (RF) shield for a printed circuit board comprises a shield for RF shielding a portion of the PCB having electronic components mounted thereon. The shield has a first portion and a second portion, wherein the first portion has a reduced cross sectional area, for reducing heat conduction between the first and the second portion when the first portion of the shield is inserted into a first plurality of holes in the PCB, for soldering the first portion of the shield to a copper foil of the PCB.
Abstract:
An electronic component having a multi-layered printed circuit board made of an organic material, a plurality of electronic components mounted in a face-down position on the multi-layered printed circuit board, a metal cover for covering the plurality of electronic components remaining a space or a cavity between the top surface of the printed circuit board and the inner surface of the metal cover having a flange surrounding the outskirts of the metal cover to be adhered to the top surface of the multi-layered printed circuit board, and a heat conductive member packed between the bottom surface of the electronic components, wherein the multi-layered printed circuit board has at least one through-hole vertically penetrating the multi-layered printed circuit board at a location corresponding to the flange and is lined by a metal film, and the multi-layered printed circuit board has a heat conductive layer arranged along the rear surface of the multi-layered printed circuit board, the heat conductive layer being connected to a metal lining of the through-hole.
Abstract:
A plurality of surface-mounting components are mounted on a mother printed-circuit board provided with component-connecting electrodes, engagement holes, and case-fixing electrodes provided inside the engagement holes. Soldering paste is applied in the vicinity of the engagement holes or in an area covering a portion of each of the engagement holes and the vicinity of the engagement holes on the mother printed-circuit board from the side of the component-mounted surface such that soldering paste is not entirely filled in the engagement hole. A plurality of shielding cases are engaged in the mother printed-circuit board by inserting engagement protrusion portions of the shielding cases into the engagement holes. Then the engagement protrusion portions of the shielding cases are soldered to case-fixing electrodes inside the engagement holes by melting solder in the soldering paste. The mother printed-circuit board is then cut and divided into individual electronic components.
Abstract:
In an electronic circuit, comprising electrical and electronic components and their connecting lines (3) on a printed circuit board (2), in which case a shielded housing encloses the electronic circuit, attenuating radiofrequencies, in order to prevent interference which acts on the electronic circuit and interference which is caused by the electronic circuit, in particular for use in a combination display instrument in a motor vehicle. Connecting lines (3) from the electronic circuit on the printed circuit board (2) are passed out of the shielded housing (1), connecting means (5) outside the shielded housing (1, 15) are connected to the connecting lines (3), and shielding is provided which reduce or suppress the ingress of radio-frequency interference into the shielded housing (1) and the emission of radio-frequency interference from the shielded housing (1).
Abstract:
Method and apparatus removing a component having a solder ball grid array to a circuitized substrate. The solder balls have a first temperature at which they melt. The component has a second temperature, greater than the first temperature, over which the component is damaged. The method has a step of placing a thermal shield over the component. In a next step, the circuitized substrate and the component having the solder ball grid array are heated to a third temperature lower than the first temperature. In a next step, a stream of hot gas of a fourth temperature is directed for a predetermined time about the periphery of the thermal shield such that the solder balls reach the first temperature thereby reflowing the solder joints or balls, while other parts of the component reach less than the second temperature. At this point, the component is either attached to the circuitized substrate or permitted to be removed therefrom. Similar methods are also provided for attaching a component having a solder ball grid array from a circuitized substrate.
Abstract:
A method of attaching a lead part and a shield case for preventing a high-frequency signal from being leaked to a printed circuit board includes a solder coating step of coating solder so that the solder should cover the whole of an aperture provided through a printed circuit board into which a lead of the lead part is inserted and so that the solder should cover a part of an aperture provided through the printed circuit board into which an engagement portion of the shield case is inserted, a mounting step of inserting the lead of the lead part and the engagement portion of the shield case into the respective apertures to thereby mount the lead part and the shield case on the printed circuit board, and a soldering step of inserting the printed circuit board mounted with the lead part and the shield case into a reflowing furnace and melting the solder to thereby carry out soldering.
Abstract:
A unit part mounting structure in which mounting legs are soldered onto soldering lands at a side of the printed board to which the unit part is mounted, so that mounting of the unit part to the printed board is made easier, and repairing and replacement of the unit part can be performed without removing the printed board, thereby making it easier to perform the repairing and replacement. In conventional unit part mounting structures, the unit part is mounted to a side of the printed board not having a conductive pattern, connecting portions of a housing are inserted into holes in the printed board, and the printed board is turned upside down to solder the connecting portions. Thus, it takes time and effort to insert and solder the unit part P. The unit part mounting structure of the invention overcomes such a problem.