Abstract:
A spectrometer includes: a lighting device (LSRC) configured to generate a light beam covering a wavelength band, a probe configured so that the light beam coming from the lighting device interacts with a fluid to be analyzed, and a spectrum analyzing device configured to receive the light beam after it has interacted with the fluid to be analyzed, and to provide light intensity measurements for various ranges of wavelengths. The lighting device includes several light-emitting components (1a-1c) emitting light in various ranges of wavelengths, and a mixing optical component (3) fixed onto the emitting surface of the light-emitting components (1a-1g), to combine the light flows emitted by the light-emitting components into a resulting light beam covering the wavelength band, and guide the resulting light flow to the probe.
Abstract:
A wide swath imaging spectrometer utilizing an array of individual spectrometer modules in the telescope focal plane to provide an extended field of view. The spectrometer modules with their individual detectors are arranged so that their slits overlap with motion on the scene providing contiguous spatial coverage. The number of modules can be varied to take full advantage of the field of view available from the telescope.
Abstract:
Methods for measuring emissions of gaseous substances to the atmosphere using scattered sunlight spectroscopy and an optical measuring device are disclosed in which the device includes a telescopic member defining a field-of-view of the optical measuring device and a scanner for controlling variation of the direction of the field of view to scan a predetermined layer of the atmosphere, the method comprising scanning the field-of-view to scan the predetermined layer of the atmosphere in the form of at least a part of a cone having its apex positioned at the optical measuring device and having a cone angle β. Optical measuring devices themselves are disclosed.
Abstract:
An objective lens assembly suitable for use in helmet-mounted applications. The objective lens assembly comprises two prisms that collectively are configured, oriented and bonded relative to each other to separate and allow simultaneous imaging of two separate spectral bands (such as VNIR and LWIR bands) received from the same object scene via a common window such that the object scene may be viewed from the same perspective without the effects of parallax.
Abstract:
An optical analysis system includes a light source configured to radiate a first light along a first ray path; a modulator disposed in the first ray path, the modulator configured to modulate the first light to a desired frequency; a spectral element disposed proximate the modulator, the spectral element configured to filter the first light for a spectral range of interest of a sample; a cavity in communication with the spectral element, the cavity configured to direct the first light in a direction of the sample; a conical mirror configured to convert the first light reflecting from the sample into a second light, the cavity being further configured to direct the second light; a beamsplitter configured to split the second light into a first beam and a second beam; an optical filter mechanism disposed to receive the first beam, the optical filter mechanism configured to optically filter data carried by the first beam into at least one orthogonal component of the first beam; a first detector mechanism in communication with the optical filter mechanism to measure a property of the orthogonal component to measure the data; a second detector mechanism configured to receive the second beam for comparison of the property of the orthogonal component to the second beam; an accelerometer configured to control the data acquisition such that only detector signals during the period of time when the system is in the proper orientation such that the material sample (e.g., aspirin) is in proximity to the interrogation window are used for calculation; a computer having a data acquisition and conversion card, the computer disposed in the system in communication with the first and second detector mechanisms for signal processing; and a battery and charging system disposed in the system in electrical communication with the system to provide stand-alone operation capability.
Abstract:
An apparatus is described for the real-time identification of one or more selected components of a target material. In one embodiment, an infrared spectrometer and a separate Raman spectrometer are coupled to exchange respective spectral information of the target material preferably normalized and presented in a single graph. In an alternative embodiment, both an infrared spectrometer and a Raman spectrometer are included in a single instrument and a common infrared light source is used by both spectrometers. In another embodiment, a vibrational spectrometer and a stoichiometric spectrometer are combined in a single instrument and are coupled to exchange respective spectral information of the target material and to compare the spectral information against a library of spectra to generate a real-time signal if a selected component is present in the target material.
Abstract:
Apparatus and method for examining a sample with a broadband radiation while preserving a small spot and low wave front distortion. The apparatus has a broadband source for generating the broadband radiation and a first reflective optics that employ toroidal mirrors that are barrel or donut-shaped and may be placed in a crossed or parallel arrangement for producing a broadband test beam that is guided to the sample such that it is incident on it at a small spot. A sampling aperture is provided for filtering a certain center portion from the broadband test beam. A second reflective optics is provided for shaping a reflected response beam from the broadband radiation that is reflected from the spot. The response beam is delivered by second reflective optics to a detector for examination. The apparatus and method can be applied to improve wave front distortion in reflectance measurements and for performing transmittance measurements with chromatic distortion compensation. The method and apparatus further provide for efficient monitoring of the broadband test beam.
Abstract:
The present invention provides an apparatus for photodynamic therapy and fluorescence detection, in which a combined light source is provided to illuminate an object body and a multispectral fluorescence-reflectance image is provided to reproduce various and complex spectral images for an object tissue, thus performing effective photodynamic therapy for various diseases both outside and inside of the body.For this purpose, the present invention provides an apparatus for photodynamic therapy and photodetection, which provides illumination with light of various wavelengths and multispectral images, the apparatus including: an optical imaging system producing an image of an object tissue and transmitting the image to a naked eye or an imaging device; a combined light source including a plurality of coherent and non-coherent light sources and a light guide guiding incident light emitted from the light sources; a multispectral imaging system including at least one image sensor; and a computer system outputting an image of the object tissue to the outside. Thus, the apparatus for photodynamic therapy and photodetection of the present invention can effectively perform the photodynamic therapy and photodetection by means of the combined light source capable of irradiating light having various spectral components to an object tissue and the multispectral imaging system capable of obtaining images from several spectral portions for these various spectral ranges at the same time, thus improving the accuracy of diagnosis and efficiency of the photodynamic therapy.
Abstract:
This application describes designs, implementations, and techniques for controlling propagation mode or modes of light in a common optical path, which may include one or more waveguides, to sense a sample.
Abstract:
Various embodiments of the present invention relate generally to systems for performing Raman spectroscopy. In one embodiment, a system for performing Raman spectroscopy comprises an analyte holder having a surface configured to retain an analyte and a light concentrator configured to receive an incident beam of light, split the incident beam into one or more beams, and direct the one or more beams to substantially intersect at the surface. The system may also include a collector configured to focus each of the one or more beams onto the surface, collect the Raman scattered light emitted from the analyte, and direct the Raman scattered light away from the surface.