Abstract:
An electrical assembly configured to be fixed in a housing of an electrical connector includes an electrical package disposed on a substrate and electrically connected to the substrate. The electrical assembly also includes a conductor terminated to the substrate at a spaced apart location from the electrical package to provide at least one of power or control signals to the substrate. A terminating segment of the conductor is thermally coupled to the electrical package to receive heat generated at the electrical package and dissipate the heat through the conductor away from the electrical package.
Abstract:
An optoelectronic arrangement includes a first circuit board, a second circuit board, and an optoelectronic semiconductor chip arranged on the first circuit board, wherein a first electrical contact surface and a second electrical contact surface are formed on a surface of the first circuit board, a first mating contact surface and a second mating contact surface are formed on a surface of the second circuit board, and the first circuit board and the second circuit board connect to one another such that the surface of the first circuit board faces toward the surface of the second circuit board, and the first mating contact surface electrically conductively connects to the first contact surface and the second mating contact surface electrically conductively connects to the second contact surface.
Abstract:
A multi-core cable assembly is formed by arranging a plurality of cables side by side and connecting the cables to a substrate 30 which is a connection member. The plurality of cables configure flat cable units 10, 20 for each diameter of cables, and ground bars 16, 27 are fixed thereto so as to be electrically connected with a shield member included in the cable. Each of ground bars 16, 27 are electrically connected to a ground pad 31 of the substrate 30. The ground bars 16, 27 adjacent to each other are disposed to be shifted in a longitudinal direction of the cable. In addition, two ground bars 16, 27 interposing the other one ground bar and positioned at both sides thereof are disposed in a position overlapped in the longitudinal direction of the cables.
Abstract:
A sensor comprises a preferably multi-layer ceramic substrate (2) and at least one sensor element (1) arranged in, at, or on the ceramic substrate (2). The sensor element (1) can be contacted via a metallic contact (6), with the metallic contact (6) being produced via a soldering connection, which electrically connects the contact (6) with the sensor element (1) and here generates a fixed mechanic connection of the contact (6) in reference to the ceramic substrate (2). Furthermore, a method is claimed for producing the sensor according to the invention.
Abstract:
An imprinted optical micro-channel structure for transmitting light to an optical receiver or receiving light from an optical transmitter includes a substrate and a cured optical layer formed in relation to the substrate. The cured optical layer includes one or more optical micro-channels imprinted in the cured optical layer. Each optical micro-channel includes a cured light-transparent material forming a light-pipe that transmits light in the optical micro-channel. The optical transmitter is located in alignment with a light-pipe for transmitting light through the light-pipe or the optical receiver is located in alignment with a light-pipe for receiving light from the light-pipe.
Abstract:
A paddle card construction disclosed for use in connecting electronic devices together. The paddle card takes the form of a circuit board that has a plurality of conductive contact pads arranged thereon in pairs. The contact pads of each pair are spaced apart from each other to provide a pair of points to which cable wire free ends may be terminated, such as by soldering. The spacing of the pads apart from each other in effect reduces to amount of capacitance in the cable wire termination area on the circuit board, thereby reducing the impedance and insertion loss in that area at high frequencies. The contact pads of each pair may be further interconnected together by a thin, conductive trace that extends lengthwise between the contact pads.
Abstract:
A cable bypass assembly is disclosed for use in providing a high speed transmission line for connecting a board mounted connector of an electronic device to a chip on the device board. The bypass cable assembly has a structure that permits it, where it is terminated to the board mounted connector and the chip member, or closely proximate thereto to replicate closely the geometry of the cable. The connector terminals are arranged in alignment with the cable signal conductors and shield extensions are provided so that shielding can be provided up to and over the termination between the cable signal conductors and the board connector terminal tails. Likewise, a similar termination structure is provided at the opposite end of the cable where a pair of terminals are supported by a second connector body and enclosed in a shield collar. The shield collar has an extension that engages the second end of the cable.
Abstract:
A method of making a multi-level micro-wire structure includes imprinting first micro-channels in a curable first layer over a substrate with a first stamp, curing the first layer, and locating and curing a curable conductive ink in the first micro-channels to form first micro-wires. Second micro-channels are imprinted in a curable second layer in contact with the first layer with a second stamp, the second layer is cured, and a curable conductive ink is located and cured in the second micro-channels to form second micro-wires. At least one of the second micro-channels contacts at least one first micro-wire and a second micro-wire in at least one of the second micro-channels is in electrical contact with at least one first micro-wire.
Abstract:
Disclosed is a flexible circuit cable with at least two bundled wire groups. The circuit cable has first and second ends respectively connected to first and second connection sections. The circuit cable includes a cluster section, which is formed of a plurality of cluster wires formed by slitting the circuit cable, in an extension direction of the cable, at a predetermined cut width. The cluster section includes at least two independent bundles, which are formed by dividing the cluster wires of the circuit cable into different signal groups according to electrical signals transmitted therethrough. Bundling members are used to the cluster wires of the independent bundles according to predetermined bundling modes. Further, the circuit cable has a surface forming a shielding conductive layer for electromagnetic interference protection and impedance control for internal signals of the circuit cable.
Abstract:
A cable holder includes: a pair of arm portions to form a holding space for holding a cable; and a guide portion, provided at an end portion of each of the pair of guide portions to block the holding space, to guide the cable into the holding space while elastically deforming the pair of arm portions in directions in which the pair of arm portions move away from each other when contacting with the cable.