Abstract:
Printed circuit substrates and electrical assemblies including a conductive composition are disclosed. The printed circuit substrate and the electrical assembly embodiments comprise a first conducting region and a second conducting region. A dielectric layer is disposed between the first and second conducting regions. An aperture is disposed in the dielectric layer and a via structure including the conductive composition is disposed in the aperture. The conductive composition is preferably in a cured state and electrically communicates with the first and second conducting regions. In preferred embodiments, the conductive composition comprises conductive particles in an amount of at least about 75 wt. % based on the weight of the composition. At least 50% by weight of the conductive particles have melting points of less than about 400.degree. C. The composition further includes a carrier including an epoxy-functional resin in an amount of at least about 50 wt. % based on the weight of the carrier, and a fluxing agent in an amount of at least about 0.1 wt % based on the weight of the carrier. The epoxy functional resin can have a viscosity of less than about 1000 centipoise at 25.degree. C.
Abstract:
An electronics package includes a substrate, a via and a solder ball. The substrate has first and second opposed surfaces. The via is located within the substrate and terminates at the first surface. The via defines an opening having first and second opposed walls. The solder ball is at least partially located over the opening. The solder ball has first and second opposed sides, the first side being adjacent the first wall and the second side being adjacent the second wall. The first side is nearer to the first wall than the second side is to the second wall.
Abstract:
An electronic device assembly includes a rigid, first substrate and a second substrate. The first substrate has a first pad on the upper surface, and a through-hole at a position of the first pad. The second substrate has a second pad on the upper surface thereof. The first and second pads are connected via solder. At least a part of the solder is positioned in the through-hole of the first substrate. The first substrate may include a flexible substrate and a rigid plate. The through-hole is provided in the flexible substrate. The first pad is provided on the lower surface of the flexible substrate. The rigid plate is attached to the flexible substrate. The plate has a hole at a position of the through-hole to make the first pad reachable.
Abstract:
An electronic component mounting base board comprises an insulating substrate provided with a mounting portion for mounting an electronic component and a heat-sink plate disposed on an lower surface of the insulating substrate, in which the insulating substrate is provided with a wiring pattern for signal or power, a grounding pattern and a grounding hole, and the grounding hole is provided on its inner wall with a metal plated film for electrically connecting to the grounding pattern and a solder is filled in an inside of the grounding hole for electrically connecting to the heat-sink plate.
Abstract:
A circuit protection device which comprises first and second laminar electrodes; a laminar PTC conductive polymer resistive element sandwiched between the electrodes; a third laminar conductive member which is secured to the same face of the PTC element as the second electrode but is separated therefrom; and an electrical connector which connects the third conductive member and the first electrode. This permits connection to both electrodes from the same side of the device, so that the device can be connected flat on a printed circuit board, with the first electrode on top, without any need for leads. The connector is preferably a cross-conductor which passes through an aperture in the PTC element, because this makes it possible to carry out the steps for preparing the devices on an assembly which corresponds to a number of individual devices, with division of the assembly as the final step.
Abstract:
A bump of an electrically conductive metal protrudes from an electrode pad of a junction FPC. The bump includes a lead portion that penetrates a conductor pattern and a base layer of the junction FPC and projects on the back side of the base layer. A spare solder layer is formed on the surface of the bump. In soldering the electrode pad of the junction FPC to a connecting pad of a main FPC, the bump and the connecting pad are opposed to each other, and a heat source is pressed against the lead portion of the bump from the side of the base layer of the junction FPC. Heat is transmitted to the spare solder layer through the lead portion and the bump, whereupon the spare solder layer is melted for soldering.
Abstract:
A packaging method of an electronic component for packaging the electronic component to a packaging substrate comprises the steps of: forming a predetermined quantity of solder bumps at connection portions of the electronic component; forming through-holes and pads on the packaging substrate in such a manner as to correspond to the solder bumps; applying a solder paste to pad portions of the through-holes and the pads formed on the surface of the packaging substrate in such a manner as to attain a specific quantity of solder components with the predetermined quantity of the solder bump; and heating the electronic component and the packaging substrate to a predetermined temperature such that button-shaped connection bumps having a predetermined height are formed between the pads and the packaging substrate so as to connect the electronic component and the packaging substrate and to keep a predetermined gap between the electronic component and the packaging substrate, and cylindrical-post connection bumps are formed between the through-holes and the packaging substrate in accordance with this predetermined gap so as to connect the electronic component and the packaging substrate. In this way, the cylindrical-post connection bumps are formed in association with the button-shaped connection bumps.
Abstract:
A ball grid array (BGA) integrated circuit package which has a plurality of elliptically shaped solder pads located on a bottom surface of a package substrate. The bottom surface also has a solder mask which contains a number of holes that expose the solder pads. The holes allow solder balls to be attached to the solder pads. The solder balls can be reflowed to attach the package to a printed circuit board. The elliptical shaped solder pads have a width that is smaller than the length of the pads. The narrow pad portions provide additional routing space for the bottom surface of the package. The solder mask hole diameters are less than the lengths of the solder pads so that portions of the pads are anchored by the maskant material. The anchored portions increase the peel strength of the pads.
Abstract:
In a first step, a first substrate is prepared. The first substrate has a first surface, a second surface, and a through-hole therebetween. In a second step, a second substrate is prepared. The second substrate has a first surface, a second surface, and a pad on the first surface of the second substrate. In a third step, a solder is provided on the pad of the second substrate. In a fourth step, the through-hole of the first substrate is positioned on the solder. The second surface of the first substrate and the first surface of the second substrate face each other. In a fifth step, the solder is heated to flow the solder into the through-hole of the first substrate. In the sixth step, an appearance of the solder on the first surface of the first substrate may be confirmed for detection of a connection of the solder.
Abstract:
A structure includes a baseplate, a circuit board parallel and adjacent to the baseplate, and an electronic component. The circuit board has an edge with a scallop formed in the edge, and the scallop is plated with a conductive material. The electronic component includes a power-dissipating surface and a pad for making electrical connection. The electronic component is mounted with the power-dissipating surface in contact with the baseplate and the pad electrically connected to the conductive material.