Abstract:
A system for the in-situ detection of chemicals, including water, in soil comprises: a penetrometer for penetrating the soil, the penetrometer including interior and exterior surfaces, and a window for allowing infrared radiation to be transmitted between the interior and exterier surfaces of the penetrometer; a driver for driving the penetrometer into the soil to a plurality of different depths; a source for providing infrared radiation which passes through the window to irradiate the soil adjacent to the window; an infrared transmitting chalcogenide optical fiber; an optical system disposed within the penetrometer adjacent to the window for transmitting infrared radiation from the source through the window into the soil and for collecting infrared radiation reflected from the soil back through the window into a first end of the chalcogenide fiber; and a spectrometer coupled to a second end of the infrared transmitting chalcogenide optical fiber for receiving and analyzing the reflected infrared radiation passing through the chalcogenide optical fiber to obtain information on chemicals present at various depths of the soil through which the penetrometer passes.
Abstract:
A spectroscopic system for the analysis of small and very small quantities of substances makes use for the purposes of energy transfer of cone-shaped aperture changers (14, 15) which are arranged in the object zone (8) between the light source (L) and the sample (9) and, during absorption measurements, also between the sample (9) and the inlet slot (3) of a spectrometer (1). If the form used is a double cone, the aperture changers (14, 15) facilitate an oblique coupling in a capillary tube accepting the sample (9) which acts as a step-waveguide for the coupled radiation.
Abstract:
A new immunoassay system is provided for the detection of ligands or ligand binding partners in solution in a heterogeneous format. The invention relies upon the detection of back scattered light from an evanescent wave disturbed by the presence of a colloidal gold label brought to the interface by an immunological reaction. The evanescent wave existing at the interface in turn is the result of a totally internally reflected incident light wave. Placement of the detector at a back angle above the critical angle insures a superior signal-to-noise ratio. Apparatus and methods for scanning, detecting and manipulating light including a scattered total internal reflectance immunoassay system are provided.
Abstract:
An accessory for use with spectrophotometers for conducting IR emission spectra analyses of samples comprising a heated highly-reflecting surface for receiving the sample, an apertured reflecting mask located over the sample, and a curved reflector for collecting emissions from the sample via the aperture over a large solid angle to increase the signal-to-noise ratio.
Abstract:
A spectrometer for detecting an electromagnetic (EM) wave spectrum having one or more wavelength components within a spectral band of interest, and a method of detecting an electromagnetic (EM) wave spectrum having one or more wavelength components within a spectral band of interest. The method uses an entrance aperture; a dispersion and imaging optics containing at least one dispersion element; an exit aperture; a collection optics; and at least one single-pixel detector, each single-pixel detector sensitive to one or more of the wavelength components; and the method comprises the steps of spatially encoding at least one entrance slit of the entrance aperture along a direction substantially transverse to a direction of dispersion of the dispersion and imaging optics; creating, using the dispersion and imaging optics, dispersed images of the entrance aperture on a plane of the exit aperture, such that respective images at the different wavelength components are offset by different amounts of displacements along the direction of dispersion; spatially encoding a plurality of exit slits of the exit aperture along the direction substantially transverse to the direction of dispersion, wherein the exit aperture comprises a plurality of exit slits arranged in the direction of dispersion; gathering, using the collection optics, a total EM wave energy that enters the entrance aperture and exits the exit aperture to one of the at least one single-pixel detectors; changing at least one of an encoding pattern of the at least one entrance slits and an encoding pattern of the plurality of exit slits for a number of times; and measuring the output of the at least one detector for respective ones of the number of times for reconstructing the EM wave spectrum.
Abstract:
The present invention includes: a light supply part; an interfering light formation part; and a detection part, in which the interfering light formation part includes a fixed reflection part, a movable reflection part, and a moving part that moves and fixes the movable reflection part along a base plane, the fixed reflection part includes a first reflection surface that reflects supplied light supplied from the light supply part and a second reflection surface provided so as to be plane-symmetrical with the first reflection surface with respect to the base plane and to be orthogonal to the first reflection surface, and the movable reflection part includes a third reflection surface and a fourth reflection surface parallel to a first reflection surface and a second reflection surface of the fixed reflection part, respectively.
Abstract:
A spectrometer that includes: a first diffraction grating configured to spectroscopically process provided light; a first detection unit configured to condense light spectroscopically processed by the first diffraction grating and to output an electrical signal corresponding to condensed light; a second diffraction grating configured to spectroscopically process 0th order light provided by the first diffraction grating; and a second detection unit configured to condense light spectroscopically processed by the second diffraction grating and to output an electrical signal corresponding to condensed light.
Abstract:
A hand held spectrometer is used to illuminate the object and measure the one or more spectra. The spectral data of the object can be used to determine one or more attributes of the object. In many embodiments, the spectrometer is coupled to a database of spectral information that can be used to determine the attributes of the object. The spectrometer system may comprise a hand held communication device coupled to a spectrometer, in which the user can input and receive data related to the measured object with the hand held communication device. The embodiments disclosed herein allow many users to share object data with many people, in order to provide many people with actionable intelligence in response to spectral data.
Abstract:
A high-resolution spectral image fast acquisition apparatus comprises an illumination source, an objective lens, a beam splitter, a single shot spectral image acquisition assembly and a reference image acquisition assembly, wherein the objective lens is used to align a sample to be measured; the illumination source is used to project an illumination light onto the sample to be measured so that the sample to be measured is amplified by the objective lens; wherein one part of amplified light enters the single shot spectral image acquisition assembly so as to acquire a low-resolution spectral cube of the sample to be measured, and another part of the amplified light enters the reference image acquisition assembly to acquire a high-resolution spectral cube. The apparatus enables rapid access to high-resolution spectral images, thereby speeding up the process of using spectral images for medical diagnosis.
Abstract:
Systems and methods for determining one or more properties of a sample are disclosed. The systems and methods disclosed can be capable of measuring along multiple locations and can reimage and resolve multiple optical paths within the sample. The system can be configured with one-layer or two-layers of optics suitable for a compact system. The optics can be simplified to reduce the number and complexity of the coated optical surfaces, et al. on effects, manufacturing tolerance stack-up problems, and interference-based spectroscopic errors. The size, number, and placement of the optics can enable multiple simultaneous or non-simultaneous measurements at various locations across and within the sample. Moreover, the systems can be configured with an optical spacer window located between the sample and the optics, and methods to account for changes in optical paths due to inclusion of the optical spacer window are disclosed.