Abstract:
A cold cathode electron gun includes a field emission cathode array type cold cathode for emitting electron beams toward an RF circuit unit of a microwave tube. An annular Wehnelt electrode, a first anode electrode and a second anode electrode are disposed in order from the field emission cathode array type cold cathode side coaxially with the field emission cathode array type cold cathode between the field emission cathode array type cold cathode and the RF circuit unit. The potential Ea1 of the first anode electrode, the potential Ea2 of the second anode electrode and the potential Eb of the RF circuit unit has a relationship of Ea1>Eb>EA2.gtoreq.0 V.
Abstract:
A process of producing a highly spin-polarized electron beam, including the steps of applying a light energy to a semiconductor device comprising a first compound semiconductor layer having a first lattice constant and a second compound semiconductor layer having a second lattice constant different from the first lattice constant, the second semiconductor layer being in junction contact with the first semiconductor layer to provide a strained semiconductor heterostructure, a magnitude of mismatch between the first and second lattice constants defining an energy splitting between a heavy hole band and a light hole band in the second semiconductor layer, such that the energy splitting is greater than a thermal noise energy in the second semiconductor layer in use; and extracting the highly spin-polarized electron beam from the second semiconductor layer upon receiving the light energy. A semiconductor device for emitting, upon receiving a light energy, a highly spin-polarized electron beam, including a first compound semiconductor layer formed of gallium arsenide phosphide, GaAs.sub.1-x P.sub.x, and having a first lattice constant; and a second compound semiconductor layer provided on the first semiconductor layer, the second semiconductor layer having a second lattice constant different from the first lattice constant and a thickness, t, smaller than the thickness of the first semiconductor layer.
Abstract:
Methods and apparatus for providing signal modulation or control of collector initialized and sustained field emission in field emitter devices without input circuit loading. A special control gate is used to modulate emission with no resultant steady-state emitter-gate current, thus increasing input resistance. The control gate may be well spaced from the emitter tip and the collector because it is not used to initiate and sustain emission from the emitter. This lowers emitter-gate and collector gate capacitances, thereby increasing input reactance for high frequency input signals. The collector-sustained field emission provides a low output resistance with relatively great collector-emitter spacing to provide high output reactance so that the high frequency response is extended.
Abstract:
A field emission source is used in conjunction with a three element asymmetric lens system to provide an electron gun having greater magnitude beam currents focused on a smaller spot size than has been previously possible for intermediate energy beams. The three element asymmetric lens system has a lower spherical aberration than prior art electrostatic guns and a very low chromatic aberration coefficient, enabling precise focusing of beams with large currents and energy spreads. The electron gun produces high current densities in beam focused on small spot areas, despite the relatively large acceptance angle and energy spread of the source beams.
Abstract:
A wide area electron gun in which an electron beam originates from secondary emission electrons emitted by a target bombarded by ions. A cylindrical main housing has a central region where the secondary emission target is located and auxiliary housings on opposed sides of the target, outside of the main housing, contain low temperature ion plasmas. Ion beams are extracted from peripheral regions of the plasmas and enter narrow ports or slits connecting the auxiliary housings with the main housing. A higher pressure in the auxiliary housings, compared to the main housing, supports ion flow into the main housing. The ion beams have a low angle of incidence to the plane of the target and may be either slightly below or above the target. In the case the beam enters from above the target, the target is segmented, like venetian blinds. The secondary electrons exit the main housing through a foil window such that the electron beam is almost at right angles to the ion beams.
Abstract:
The electron gun comprises an ionization chamber, adjacent to a high voltage chamber. In the wall common the both chambers provision is made for an extraction grid. On the opposite side, the ionization chamber comprises an outlet window for the electrons similar in shape to the extraction grid, and accompanied by a fine metallic foil. The high voltage chamber comprises a cathode brought to a high negative voltage. By giving the two grids the shape of similar parallel strips, a masking effect and a focusing effect are obtained at one and the same time which allows the efficiency of the electron gun to be increased.
Abstract:
A plasma-anode electron gun includes a cathode means of a material such as molybdenum having a relatively high ratio of emission of secondary electrons to impinging helium ions. A hollow annular anode structure (16) contains an ionized plasma, and has a central opening (38) through which the electron beam (36) is directed, when ions from the anode are released to impinge upon the cathode (12). The anode and ion source structure may be grounded, and ions are released through openings facing the cathode when a positive trigger pulse is applied to one or more electrodes extending within the plasma. The cathode is preferably operated at a voltage in the order of thirty to two hundred thousand volts negative with respect to the cathode. Leakage of ions from the hollow anode may be inhibited by the provision of a supplemental grid biased to a low positive potential.
Abstract:
This disclosure is concerned with automatically replenishable cold cathode structures and the like wherein the monitoring of a predetermined variation in electron beam performance caused by erosion of the cathode material generates control signals for advancing reserve cathode material into operative position.
Abstract:
A variable shaping type electron beam exposing apparatus is provided which comprises an electron gun which irradiates an electron beam from the front end of a cathode chip; shaping plates having openings of variable shapes for shaping the electron beam irradiated from the electron gun into the shapes of these openings; and an objective lens for focusing the electron beam passed through the shaping plates into a predetermined shape on a sample. In this apparatus, the cathode chip is made of single-crystal lanthanum hexaboride whose axial orientation is , the front end of it is formed into a circular conical shape, and half the vertical angle of the front end is set to be between 60.degree. and 85.degree.. The maximum area of the image on the sample is between 2 to 50 .mu.m.sup.2.
Abstract:
A pulsed field emission type electron gun in which the pulse voltage peak between the heated emitter and its associated electrode is maintained constant, and the pulse duty factor or emitter heating temperature of bias voltage is controlled to keep the field emitted electron beam constant, during the pulse rest time, thereby prolonging the life of the emitter regardless of any discrepancy between the radius of curvature of one emitter and another.