Abstract:
A method of fixing reflowable elements on electrical contacts. The method includes providing a strip having a number of electrical contacts, each contact including a contact body and a tail portion extending away from the contact body. The tail portions of the contacts are then disposed adjacent an elongate reflowable member. The elongate reflowable member is pushed onto the tail portions of the plurality of contacts. Subsequently, the elongate reflowable member is cut into a plurality of separate reflowable elements, each reflowable element corresponding to one of the tail portions. The electrical contacts with the reflowable element attached thereto are separated from the strip.
Abstract:
A low profile heat removal system suitable for removing excess heat generated by an integrated circuit operating in a compact computing environment is disclosed.
Abstract:
Method and system for moving a frozen adhesive particle towards a target body, comprising launching means (13) which are arranged to launch the particle (2) in its frozen form towards the target body (3, 4) via a movement path (14) through a gap (15) between the launching means and the target body. The medium in the gap may have a temperature above the adhesive particle's melting temperature. The launching means may be arranged to launch the particle at a high speed. The launching means and the target body may have a geometry causing that the movement path is substantially vertical or substantially horizontal.
Abstract:
Two groups of interconnection devices and methods are described. Both provide columns between electronic packages and boards or between chips and substrates or the like. In the first group, called Thermal Flex Contact Carrier (TFCC), the column elements are carved out of a flat laminated structure and then formed to suit. In the second group, the carrier, which carries the connecting elements, is made out of a soluble or removable material, which acts at the same time, as a solder mask, to prevent the solder from wicking along the stem of the elements.
Abstract:
The present invention relates to a compliant leaded interposer for resiliently attaching and electrically connecting a ball grid array package to a circuit board. The interposer may include a substrate, a plurality of pads, and a plurality of pins. The plurality of pads may be positioned substantially on the top surface of the substrate and arranged in a predetermined pattern substantially corresponding to the solder ball pattern on the ball grid array package. The plurality of pins may be positioned substantially perpendicular to the substrate and may extend through the substrate and the plurality of pads. The interposer may be configured to attach the ball grid array package to the circuit board such that each of the solder balls on the ball grid array package contacts at least a portion the plurality of pins and at least a portion of the plurality of pads and such that the each of the plurality of pins also connects to a contact on the circuit board.
Abstract:
Electrical components 402, 504, 506 are placed on a carrier 508. Then the components are encapsulated in an electrically insulating material 404. The carrier 508 is removed and the leads 414 of the encapsulated components are registered to intermediate connectors 412 in a central bonding, or joining, material 406 and to respective leads 410 of a printed circuit board 408. The components, central bonding material, and printed circuit board are then joined and interconnected.
Abstract:
An apparatus is disclosed that improves density of electrical components in a circuit assembly. Electrical components 202, 204 are stacked so that they overlap each other and are encapsulated in an electronic insulating material 104. The resulting subassembly may be integrated onto a printed circuit board or into a reverse-interconnection process assembly.
Abstract:
A contact tail for an electronic component compatible with surface mount manufacturing techniques. The contact tail is stamped, providing a relatively low manufacturing cost and high precision. High precision in the contact tails in turn provides more reliable solder joints across an array of contact tails in an electronic component. Further, the contact tail may be shaped to reduce the propensity for solder to wick from the attachment area during a reflow operation. Reducing the propensity of solder to wick reduces the chance that solder will interfere with the operation of the electronic component. Additionally, reducing the propensity for solder to wick allows pads to which the contact tail is attached to be positioned over vias, thereby increasing the density with which contacts may be attached to a substrate. The reliability with which electronic assemblies incorporating components using the contact tail is also increased when the contact tail is used in self-centering arrays.
Abstract:
Computing systems with conventional CPUs coupled to co-processors or accelerators implemented in FPGAs (Field Programmable Gate Arrays). One embodiment of the systems and methods according to the invention includes a FPGA accelerator implemented in a computer system by providing an adapter board configured to be used in a standard CPU socket.
Abstract:
An electronic system with integrated circuit device and passive component is disclosed. One embodiment provides a printed circuit board, a method for fabricating an electronic system, and an electronic system, including at least one integrated circuit device and at least one passive component, wherein the passive component is arranged at least partially underneath the integrated circuit device.