Abstract:
The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.
Abstract:
The invention generally relates to systems and methods for transferring ions for analysis. In certain embodiments, the invention provides a system for analyzing a sample including an ionizing source for converting molecules of a sample into gas phase ions in a region at about atmospheric pressure, an ion analysis device, and an ion transfer member operably coupled to a gas flow generating device, in which the gas flow generating device produces a laminar gas flow that transfers the gas phase ions through the ion transfer member to an inlet of the ion analysis device.
Abstract:
The invention generally relates to mass spectrometry probes and systems for ionizing a sample. In certain embodiments, the invention provides a mass spectrometry probe including a substrate in which a portion of the substrate is coated with a material, a portion of which protrudes from the substrate.
Abstract:
The invention generally relates to ion generation using modified wetted porous materials. In certain aspects, the invention generally relates to systems and methods for ion generation using a wetted porous substrate that substantially prevents diffusion of sample into the substrate. In other aspects, the invention generally relate to ion generation using a wetted porous material and a drying agent. In other aspects, the invention generally relates to ion generation using a modified wetted porous substrate in which at least a portion of the porous substrate includes a material that modifies an interaction between a sample and the substrate.
Abstract:
The invention generally relates to systems and methods for transferring ions for analysis. In certain embodiments, the invention provides a system for analyzing a sample including an ionizing source for converting molecules of a sample into gas phase ions in a region at about atmospheric pressure, an ion analysis device, and an ion transfer member operably coupled to a gas flow generating device, in which the gas flow generating device produces a laminar gas flow that transfers the gas phase ions through the ion transfer member to an inlet of the ion analysis device.
Abstract:
The present invention generally relates to a low temperature plasma probe for desorbing and ionizing at least one analyte in a sample material and methods of use thereof. In one embodiment, the invention generally relates to a low temperature plasma probe including: a housing having a discharge gas inlet port, a probe tip, two electrodes, and a dielectric barrier, in which the two electrodes are separated by the dielectric barrier, in which application of voltage from a power supply generates a low temperature plasma, and in which the low temperature plasma is propelled out of the discharge region by the electric field and/or the discharge gas flow.
Abstract:
A method of interfacing atmospheric pressure ion sources, including electrospray and desorption electrospray ionization sources, to mass spectrometers, for example miniature mass spectrometers, in which the ionized sample is discontinuously introduced into the mass spectrometer. Discontinuous introduction improves the match between the pumping capacity of the instrument and the volume of atmospheric pressure gas that contains the ionized sample. The reduced duty cycle of sample introduction is offset by operation of the mass spectrometer under higher performance conditions and by ion accumulation at atmospheric pressure.