Abstract:
Flexible LED assemblies are described. More particularly, flexible LED assemblies having substrates with conductive features positioned on or in the substrate, and layers of ceramic positioned over exposed portions of the substrate to protect against UV degradation, as well as methods of making such assembles, are described.
Abstract:
To provide a wiring substrate which can prevent short circuit between connection terminals, and which realizes reduction of the pitch between the connection terminals. The wiring substrate of the present invention includes a layered structure including one or more insulation layers and one or more conductor layers, and the wiring substrate is characterized in that a plurality of connection terminals are formed on the layered structure so as to be separated from one another; a filling member is filled between the connection terminals; and each of the connection terminals has a side surface composed of a contact surface which is in contact with the filling member, and a spaced surface which is not in contact with the filling member and which is located above the contact surface and below the top surface of the filling member.
Abstract:
Embodiments of the invention provide a touch panel and a display device, which relates to the technical field of display and solves the problem that the connecting electrodes of an existing touch panel are easily eroded by water, oxygen, etc. in the air. A touch panel comprises a circuit binding area formed with a plurality of connecting electrodes for binding and electrically connecting with a circuit board. The touch panel further comprises a protective layer at least covering one side surface of the connecting electrode.
Abstract:
An integrated circuit assembly includes a first electrically conductive sheet, a second electrically conductive sheet electrically isolated from the first electrically conductive sheet, a non-conductive material disposed between the first and second electrically conductive sheets, an electrical trace disposed on the non-conductive material and electrically isolated from the first and second electrically conductive sheets, and an integrated circuit having at least one lead directly connected to the first electrically conductive sheet, at least one lead directly connected to the second electrically conductive sheet, and at least one lead electrically connected to the electrical trace. Other integrated circuit assemblies and method for making integrated circuit assemblies are also disclosed.
Abstract:
A method of manufacturing a multi-layer printed circuit board by bonding together a plurality of circuit board layers, each of which includes a substrate and a conductive circuit pattern on at least one surface of the substrate, includes the steps of: coating the surface of the substrate with a continuous layer of conductive material, masking the layer with a resist, etching away a part of the conductive material so as to obtain the circuit pattern with conductive parts separated by gaps, and filling the gaps with an electrically insulating adhesive material to a level that is at least equal to the thickness of the layer of conductive material. The resist is left on the conductive parts and the adhesive material is selected to be chemically compatible with the resist.
Abstract:
A layer or layers for use in package substrates and die spacers are described. The layer or layers include a plurality of ceramic wells lying within a plane and separated by metallic vias. Recesses within the ceramic wells are occupied by a dielectric filler material.
Abstract:
A method is provided for producing a printed circuit board. The method includes the step of providing an insulating substrate having a layer of aluminum material applied to the substrate. A portion of the layer of aluminum material is removed for defining a circuit trace. A layer of conductive material is applied to the layer of aluminum material.
Abstract:
To obtain a wiring board that allows improving flowability of an underfill to be filled up a clearance between an electronic component and the wiring board. The present invention is a wiring board with a laminated body where one or more layer of each of an insulating layer and a conductor layer are laminated. The wiring board includes a plurality of connecting terminals formed separately from one another on the laminated body, a filling member filled up between the plurality of connecting terminals, and a solder resist layer laminated on the laminated body. The filling member is in contact with at least a part of each side surface of the plurality of connecting terminals. The solder resist layer includes an opening that exposes the plurality of connecting terminals. The filling member has a surface roughness rougher than a surface roughness of a top surface of the solder resist layer.