Abstract:
A component-on-package circuit may include a component for an electrical circuit and a circuit module attached to the component. The circuit module may have circuitry and at least one leadframe which connects the circuitry to the component both electrically and thermally. The leadframe may have a high degree of both electrical and thermal conductivity and a non-planar shape that provides spring-like cushioning of force applied to the component in the direction of the circuit module.A method of making a component-on-package circuit may include attaching a component for an electrical circuit to a circuit module. The circuit module may have circuitry and at least one leadframe which connects the circuitry to the component after the attachment both electrically and thermally. The leadframe may have a high degree of both electrical and thermal conductivity and a non-planar shape that provides a spring-like cushioning of force applied to the component in the direction of the circuit module. The circuit module may be encapsulated in molding material after the circuit module has been attached to the component, without encapsulation the component at the same time.
Abstract:
The invention relates to an electronic component. The electronic component 2 has an electrical assembly 3 having two electrical connections 4, 5 that are each formed on opposing faces of the assembly. For each connection 4, 5, the component has at least one electrically conductive connection element 9, 10 having a mounting foot 14, 15 for connection to a circuit carrier 22. According to the invention, the connection element 8, 9 has at least two metal layers 10, 11, 12, 13 at least on one section, wherein the metal layers are each formed from different metals and integrally connected to one another. Preferably, one metal layer 12, 13 from the metal layers has greater thermal conductivity than the other metal layer 10, 11.
Abstract:
An electronic apparatus includes a board, a first electronic component, a mold resin and a second electronic component. The board has a first surface and a second surface opposite to the first surface. The first electronic component is mounted on the first surface of the board. The mold resin seals the first electronic component and the first surface of the board. The second electronic component is arranged on the mold resin.
Abstract:
A main body of an electronic part has multiple electrodes, to which multiple terminals are respectively connected. The terminals include a fuse terminal and a normal terminal, each of which extends from the main body to a printed board so that the main body is supported at a position above and separated from a board surface of the printed board. The fuse terminal has an intermediate portion between an electrode-connected portion and a land-connected portion. The intermediate portion has a cut-off portion having a smaller width than other portions of the fuse terminal, so that the cut-off portion is melted down when excess current flows in the fuse terminal. The intermediate portion extends in a direction parallel to the board surface or in a direction inclined to the board surface at an angle smaller than 90 degrees.
Abstract:
Disclosed is a surface mount device to be mounted on a base member, including plural lead units, each of the plural lead units including, a lead including a body portion and a foot formed at an end of the lead; a solder portion formed at the foot of the lead to protrude toward the direction of the base member to have a summit portion, and a diffusion prevention portion provided on the lead for preventing a diffusion of a solder along the body portion of the lead.
Abstract:
A method and apparatus for assembling a power semiconductor is provided. A device includes a printed circuit board, a heat sink, and a semiconductor chip package. The semiconductor chip package is located between the printed circuit board and the heat sink. A heat-generating surface of the semiconductor chip package is oriented such that the heat-generating surface faces the heat sink.
Abstract:
Embodiments relate generally to wearable electrical and electronic hardware, computer software, wired and wireless network communications, and to wearable/mobile computing devices. More specifically, various embodiments are directed to, for example, aligning a flexible substrate and/or components thereof during fabrication to enhance reliability. In one example, a method includes forming a framework that includes, for example, a portion (e.g., an anchor portion) configured to couple to a flexible substrate, the portion having a neutral axis. Also, the method may include forming a flexible substrate that includes a supported flex region including conductors and one or more rigid regions configured to receive one or more components. A rigid region might include an encapsulated rigid region. The method further may also include aligning the encapsulated rigid region at an angle to the neutral axis, and molding over the encapsulated rigid region.
Abstract:
A light source module includes a substrate, a circuit, at least one first light source unit, and at least one second light source. The circuit is disposed on the substrate and includes a first signal channel and a second signal channel. The first light source unit is disposed on a bearing surface, wherein the first light source unit has a first A pin and a first B pin having different polarity from the first A pin. The second light source unit is disposed on the bearing surface and is adjacent to the first light source unit, wherein the second light source unit has a second A pin and a second B pin having different polarity from the second A pin, and the second A pin is adjacent to the first A pin of the first light source unit and has a same polarity with the first A pin.
Abstract:
A packaging board of the type having board terminals soldered on a printed board and including an insulation support member made of a resin disposed on a printed board having tubular support portions configured to receive board terminals, visual recognition windows configured for visually recognizing soldering portions of the board terminals inserted into the printed board through the windows, and engaging portions that engage the board terminals and define insertion amounts of the board terminals.
Abstract:
A battery pack that prevents a solder material from flowing down due to a tab electrically connecting a battery to a protective circuit board, thereby improving reliability, coupling efficiency, safety, and productivity is disclosed. The battery pack includes: a multi-cell battery having a positive electrode and a negative electrode, in which a plurality of battery cells are electrically connected to each other; a protective circuit board electrically connected to the multi-cell battery and having via holes; a pair of conductive tabs each including an insert portion inserted into a corresponding via hole and a bending portion integrally extending from the insert portion and bent from the insert portion; and a pair of soldering portions each being formed at at least some portions of a corresponding insert portion and a corresponding bending portion.