Abstract:
A spectrophotometer includes a plurality of LEDs arranged in a circular array, each having a calibrated power input determined by the use of pulse width modulation and each having a unique wavelength band determined by the utilization of a unique fluorescent phosphor coating or lens. At least one of the LEDs comprising a phosphor-free high energy UV LED. Light reflected to the spectrophotometer is divided into predetermined wavelength ranges through the utilization of a linear variable filter and photo detectors wherein the analog signal from a photo detector is converted to a digital value through the use of auto-ranging gain technique.
Abstract:
The disclosure relates to a portable system for obtaining a spatially accurate wavelength-resolved image of a sample having a first and a second spatial dimension that can be used for the detection of hazardous agents by irradiating a sample with light, forming an image of all or part of the sample using Raman shifted light from the sample, and analyzing the Raman shifted light for patterns characteristic of one or more hazardous agents.
Abstract:
The present invention provides a luminescence sensor (20) comprising at least one chamber (22) and at least one optical filter formed by at least a first conductive grating (11), the at least first conductive grating (11) comprising a plurality of wires (12), wherein at least one of the wires (12) of the at least first conductive grating (11) is linked to a temperature control device for controlling the temperature of at least one chamber (22) in the sensor.
Abstract:
Various embodiments of the present invention relate generally to systems for performing Raman spectroscopy. In one embodiment, a system for performing Raman spectroscopy comprises an analyte holder having a surface configured to retain an analyte and a light concentrator configured to receive an incident beam of light, split the incident beam into one or more beams, and direct the one or more beams to substantially intersect at the surface. The system may also include a collector configured to focus each of the one or more beams onto the surface, collect the Raman scattered light emitted from the analyte, and direct the Raman scattered light away from the surface.
Abstract:
A method of using multivariate optical computing in real-time to collect instantaneous data about a process stream includes installing an optical analysis system proximate a process line, the process line being configured to move a material past a window of the optical analysis system; illuminating a portion of the material with a light from the optical analysis system; directing the light carrying information about the portion through at least one multivariate optical element in the optical analysis system to produce an instantaneous measurement result about the portion; and continuously averaging the instantaneous measurement result over a period of time to determine an overall measurement signal of the material.
Abstract:
A color inspection system capable of making a determination on pass or failure with accuracy equivalent to that for the case of a visual inspection even in the case of inspecting various textile products as measurement targets, such as raised cloth, cloth with printed patterns such as a marbled pattern, moire pattern and detailed pattern is provided. With the color inspection system, an illuminant is set to shine a light on the surface of a textile product placed on the top surface of a measuring platform to thereby make measurements from a direction at an angle of 45 degrees from the surface of a measuring region of the textile product by use of a spectroradiometer of a measuring unit. The spectroradiometer is provided with a wide range lens attached thereto to thereby expand a measuring region. The results of measurement by the spectroradiometer are inputted to an information processor of a determination unit. The information processor computes color values for the whole measuring region to be compared with standard color values stored in a memory to thereby make a determination on pass or fail.
Abstract:
A method for optically sampling characteristics of subsurface fluids within a wellhole using continuous, non-pulsed light transmitted downhole in optical fibers for both sampling and reference light channels for accurate attenuation compensation.
Abstract:
There is provided an optical imaging device (18) for splitting an initial image into at least two images with different optical characteristics. The device comprises a dichroic mirror (32) to create first and second optical pathways respectively incident on first and second mirrors (41, 41′) carried on a centrally pivoted rotatable arm, characterised in that the first and second reflective means are moveable along the arm (42) whilst held in fixed relationship to each other, thereby to adjust separation of the first and second optical pathways. A third mirror (46) in fixed relationship to the beam splitter (32) is positioned adjacent where the first and second optical pathways intersect, or just before the intersection of the first and second optical pathways, or just after the point of intersection.
Abstract:
Sensor electrodes and wiring patterns can be formed with fewer processes, and easy assembly without interference between the wires and optical substrates is realized. Provided is a variable spectroscopy element (1) that includes two optical substrates (3a, 3b) that oppose each other at a distance therebetween and that include reflection films (2) on the opposing surfaces; actuators (3c) that change the distance between the optical substrates; sensors (6) having electrode portions (6a, 6b) that detect the distance between the optical substrates on the opposing surfaces; inclined surfaces (5) that are provided on at least one of the optical substrates (3a (3b)), in the outer peripheral parts of the opposing surfaces, and gradually increase the distance from the other optical substrate (3b (3a)) radially outward and in the plate-thickness direction; and connecting patterns (6e, 6f) that are provided on the inclined surfaces (5) and connect wiring patterns (6c (6d)) that connect to the electrode portions (6a (6b)) of the sensor (6) and connecting patterns (6e, (6f)) that are disposed radially outward with respect to the wiring patterns (6c, (6d)) and connect to wires (7) that output signals from the electrode portions (6a, (6b)) to external parts.
Abstract:
An improved Raman microspectrometer system extends the optical reach and analysis range of an existing Raman microspectrometer to allow analysis and/or repair of an oversized sample. The improved Raman microspectrometer system includes an extender for extending the optical reach of the existing microspectrometer and a supplemental stage which extends the analysis range of the existing microspectrometer by providing travel capabilities for non-destructive analysis of an entire oversized sample. Such an arrangement decreases manufacturing costs associated with testing oversized samples such as mammography panels, enabling analysis and/or repair to be performed without destruction.