Abstract:
Monitoring of a pulsed plasma is described using an optical sensor. In one example, the invention includes receiving light emitted by a pulsed plasma in a semiconductor plasma processing chamber, sampling the received light at a sampling rate higher than a pulse rate of the pulsed plasma, wherein the sampled light has a periodic amplitude waveform and the sampling rate is higher than the period of the amplitude waveform, accumulating multiple sampled waveforms to form a mean waveform, and transmitting characteristics of the mean waveform to a chamber control tool.
Abstract:
A non-destructive method for chemical imaging with ˜1 nm to 10 μm spatial resolution (depending on the type of heat source) without sample preparation and in a non-contact manner. In one embodiment, a sample undergoes photo-thermal heating using an IR laser and the resulting increase in thermal emissions is measured with either an IR detector or a laser probe having a visible laser reflected from the sample. In another embodiment, the infrared laser is replaced with a focused electron or ion source while the thermal emission is collected in the same manner as with the infrared heating. The achievable spatial resolution of this embodiment is in the 1-50 nm range.
Abstract:
A device for mass spectroscopy comprising a chamber configured to provide an atomization source, a boost device configured to provide radio frequency energy to the chamber, and a mass analyzer in fluid communication with the chamber and configured to separate species based on mass-to-charge ratios is disclosed. In certain examples, a boost device may be used with a flame or plasma to provide additional energy to a flame or plasma to enhance desolvation, atomization, and/or ionization.
Abstract:
A handheld LIBS analyzer includes a laser source for generating a laser beam and a spectrometer subsystem for analyzing a plasma generated when the laser beam strikes a sample. A nose section includes an end plate with an aperture for the laser beam, a purge cavity behind the aperture fluidly connected to a source of purge gas, and a shield covering the purge cavity. A vent removes purge gas from the purge cavity when the end plate is placed on the sample.
Abstract:
A multiband imaging system comprising: an optical module configured for acquiring simultaneously images from a common field-of-view (FOV) scene in a short wavelength spectral band and in a long wavelength spectral band, the optical module comprising a polarizer configured for applying polarization filtering to electromagnetic radiation of the long wavelength spectral band; and a processing module configured to analyze data indicative of received irradiance distribution between the short and long wavelength spectral bands.
Abstract:
A method for deriving a background-corrected portion of a measured optical emission spectrum comprising the steps of identifying two or more background correction points from the portion of the measured emission spectrum; deriving a background correction function fitted to the identified background correction points, and applying the background correction function to the portion of the measured emission spectrum so as to produce a background-corrected portion of the emission spectrum, wherein the background correction points are identified from the measured data points by consideration of the gradients between the measured data points.
Abstract:
A spark optical emission spectrometer comprising: a spark source for causing spark induced emission of light from a sample; a single entrance slit; a toroidal mirror for directing the light through the single entrance slit; a plurality of diffraction gratings for diffracting light that has been directed through the entrance slit by the mirror, whereby the plurality of diffraction gratings are simultaneously illuminated; and at least one array detector for detecting the diffracted light from the plurality of diffraction gratings, wherein the minor is for directing the light through the entrance slit such that light from different regions in the spark source is spatially separated in an image of the light at the gratings whereby a first diffraction grating is preferentially illuminated with light from a first region of the spark source and simultaneously a second diffraction grating is preferentially illuminated with light from a second region of the spark source.
Abstract:
A nebulizer characterized in being provided with: an inner tube, which is disposed coaxially with an outer tube in which a nebulizing outlet is formed and which, together with the outer tube, forms a gas channel therebetween; a sample channel, which is formed inside the inner tube and through which a liquid sample to be nebulized flows; and a reticular membrane disposed with a gap from the sample outlet that is formed at one end of the inner tube and in which multiple holes, through which liquid sample drops flowing out from the sample outlet pass along with a gas, are formed. Using the nebulizer, the particle size of the nebulized liquid droplets can be made uniformly fine over a broad range of sample liquid flow volumes while retention of sample liquid in the nebulizer is reduced.
Abstract:
An analysis apparatus includes a plasma generation unit and an optical analysis unit. The plasma generation unit generates initial plasma by momentarily energizing a target substance to be turned into a plasma state, and maintains the target substance in the plasma state by irradiating the initial plasma with an electromagnetic wave for a predetermined period of time. The optical analysis unit identifies the target substance based on information with respect to emission intensity during a period from when the emission intensity reaches a peak due to the initial plasma until when the emission intensity increases and reaches approximately a constant value due to electromagnetic wave plasma maintained by the electromagnetic wave, or information with respect to emission intensity after the electromagnetic wave irradiation is terminated.
Abstract:
The analysis apparatus 10 includes a plasma generation device 11 and an optical analysis device 13. The plasma generation device 11 generates initial plasma by energizing a substance in space to be turned into a plasma state, and maintains the plasma state by irradiating the initial plasma with electromagnetic wave for a predetermined period of time. Then, the optical analysis device 13 analyzes the target substance 15 based on a time integral value of intensity of emission from the target substance 15 in an electromagnetic wave plasma region, which is maintained by the electromagnetic wave.