Abstract:
A light emitting module is configured to provide substantially uniform lighting using a plurality of lighting sources. The light emitting module includes a diffusion plate disposed at a set distance from the light emitting module. A light source substrate has a substantially quadrilateral outer perimeter with at least one gap formed therein, and a plurality of light sources are disposed on the light source substrate according to a repeated quadrilateral pattern. A distance between adjacent light sources in the repeated quadrilateral pattern is selected based on the set distance h from the diffusion plate to the light emitting module, and on a greater of two diagonal distances x, y of the quadrilateral pattern. The diffusion plate diffuses light emitted by the light sources to provide substantially uniform light. Various other aspects of the light emitting module are additionally described.
Abstract:
A wiring substrate includes a substrate main body which is formed of a ceramic laminate and has a rectangular shape in plan view, and which has a front surface and a back surface and has four side surfaces, each being located between the front surface and the back surface, and having a groove surface located on a side toward the front surface and a fracture surface located on a side toward the back surface; and a metalized layer which is formed on the front surface of the substrate main body so as to extend along the four side surfaces, and which has a rectangular frame shape in plan view, wherein a horizontal surface of the ceramic laminate of the substrate main body is exposed between the metalized layer and the groove surface of each side surface of the substrate main body.
Abstract:
Substrate components for packaging IC chips and electronic device packages are disclosed. A substrate component for packaging IC chips comprises: a glass core base with at least one conductive through via connecting a combination of metallization and dielectric structures on both an upper surface and a lower surface of the glass core base; and, tapered edges created at a peripheral region of the glass core base; wherein dielectric layers are disposed over the tapered edges at the peripheral region of the glass core base. In accordance with an embodiment of the invention, the dielectric layers have a substantial planar upper surface, a lower surface conformably interfaced with the tapered edges at peripheral region of the glass core base, and a steep cutting face with the tapered edges of the glass core base. Alternatively, the tapered edges at peripheral region of the glass core base are not covered by the dielectric layers, and an encapsulated material sealing the tapered edges at peripheral region of the glass core base.
Abstract:
Provided is a circuit device in which encapsulating resin to encapsulate a circuit board is optimized in shape, and a method of manufacturing the circuit device. A hybrid integrated circuit device, which is a circuit device according to the present invention includes a circuit board, a circuit element mounted on a top surface of the circuit board, and encapsulating resin encapsulating the circuit element, and coating the top surface, side surfaces, and a bottom surface of the circuit board. In addition, the encapsulating resin is partly recessed and thereby provided with recessed areas at two sides of the circuit board. The providing of the recessed areas reduces the amount of resin to be used, and prevents the hybrid integrated circuit device from being deformed by the cure shrinkage of the encapsulating resin.
Abstract:
In a mark forming step in a manufacturing method for a component incorporated substrate in which an electronic component is positioned with reference to a mark formed in a copper layer, when an imaginary line extending from a search center of a search range of a sensor, to an edge side of the search range is represented as a search reference line and an imaginary line extending, in a state in which a mark center, is matched with the search center, from the mark center in the same direction as the search reference line to an outer ridgeline of the mark is represented as a mark reference line, the mark formed in a shape in which the outer ridgeline of the mark is present in a position where a length of the mark reference line is in a range of 30% or more of the search reference line.
Abstract:
An illumination device comprises a holder, a plurality of light emitting elements, a translucent cover and a lamp cap structure. The holder comprises a heat dissipating base body and a carrying unit. The carrying unit is connected to a top portion of the heat dissipating base body and comprises a carrying base body, a circuit pattern and a heat dissipating pattern, the circuit pattern and the heat dissipating pattern are directly formed to a surface of the carrying base body, the circuit pattern has a plurality of mounting positions, the heat dissipating pattern at least extends from a region close to the mounting position to a region where the heat dissipating pattern can contact the heat dissipating base body. The plurality of light emitting elements are respectively provided at the plurality of the mounting positions and establish an electrical connection with the circuit pattern.
Abstract:
In a high frequency signal line, a first signal line extends along a first dielectric element assembly, a first reference ground conductor extends along the first signal line, a second signal line is provided in or on the second dielectric element assembly and extends along the second dielectric element assembly, a second reference ground conductor is provided in or on the second dielectric element assembly and extends along the second signal line. A portion of a bottom surface at an end of the first dielectric element assembly and a portion of the top surface at an end of the second dielectric element assembly are joined together such that a joint portion of the first and second dielectric element assemblies includes a corner. The second signal line and the first signal line are electrically coupled together. The first and second reference ground conductors are electrically coupled together.
Abstract:
An illustrative inventory of vehicle accessory control components includes a plurality of first circuit boards and a plurality of second circuit boards. The first circuit boards each have a substrate with a plurality of circuit elements supported on the substrate. The first circuit board substrates have an overall perimeter shape including an outer edge profile and a plurality of first deviations from the outer edge profile. The second circuit boards each have a substrate with a plurality of circuit elements supported on them. The second circuit board substrates have the overall perimeter shape including the same outer edge profile as the first circuit board substrates. The second circuit board substrates include a plurality of second deviations from the outer edge profile. At least one portion of the second deviations is different than the first deviations of the first circuit boards.
Abstract:
A panel structure includes a substrate, a decoration layer and a conductive component. The decoration layer is located in a first region and the rest region is a second region. The decoration layer includes a middle portion and a first edge protruding portion located between the middle portion and the second region and thinner than the middle portion. Each the conductive component extends in a first direction towards the first region from the second region and crosses the first edge protruding portion followed by extending in a second direction on the middle portion of the decoration layer, the first direction intersects the second direction, each the conductive component on the first edge protruding portion has a first width, each the conductive component on the middle portion extends in the second direction and has a second width less than the first width.
Abstract:
There is provided a copper clad laminate (CCL) including: a metal plate; an insulating layer having a planar area greater than that of the metal plate and laminated on the metal plate; and a copper layer laminated on the insulating layer, wherein edges of the insulating layer extend outwardly beyond edges of the metal plate so that an insulation distance insulating the edges of the metal plate from edges of the copper layer is formed. The insulating layer may include a polyimide layer, and a polyimide bonding layer.