Abstract:
A light emitting diode including a first-type semiconductor layer, an emitting layer, a second-type semiconductor layer, a first electrode, a second electrode, and a Bragg reflector structure. The emitting layer is configured to emit a light beam and is located between the first-type semiconductor layer and the second-type semiconductor layer. The light beam has a peak wavelength in a light emitting wavelength range. The first-type semiconductor layer, the emitting layer, and the second-type semiconductor layer are located on a same side of the Bragg reflector structure. A reflectance of the Bragg reflector structure is greater than or equal to 95% in a reflective wavelength range at least covering 0.8X nm to 1.8X nm, and X is the peak wavelength of the light emitting wavelength range.
Abstract:
A light emitting diode (LED) having distributed Bragg reflector (DBR) and a manufacturing method thereof are provided. The distributed Bragg reflector is used as a reflective element for reflecting the light generated by the light emitting layer to an ideal direction of light output. The distributed Bragg reflector has a plurality of through holes, such that the metal layer and the transparent conductive layer disposed on two sides of the distributed Bragg reflector may contact each other to conduct the current. Due to the distribution properties of the through holes, the current may be more uniformly diffused, and the light may be more uniformly emitted from the light emitting layer.
Abstract:
A light emitting element structure includes a light emitting unit configured to emit light; a package unit configured to cover the light emitting unit; a transparent light guide structure arranged on the package unit; and a first periodic sub-wavelength microstructure formed on the transparent light guide structure, wherein a plurality of holes of the first periodic sub-wavelength microstructure form a periodic pattern, and a distance between two adjacent holes of the first periodic sub-wavelength microstructure is smaller than λ/n, λ is a peak wavelength of light passing through the package unit from the light emitting unit, and n is a refractive index of the first periodic sub-wavelength microstructure.
Abstract:
A light emitting device structure includes a light emitting device, a molding compound, a transparent substrate and a reflective layer. The light emitting device has an upper surface and a lower surface opposite to each other, a side surface connecting the upper and lower surfaces, and a first pad and a second pad located on the lower surface and separated from each other. The molding compound at least encapsulates the upper surface and the side surface, and exposes the first pad and the second pad. The transparent substrate is disposed above the upper surface of the light emitting device, and the molding compound is located between the transparent substrate and the light emitting device. The reflective layer directly covers the side surface of the light emitting device, wherein the molding compound encapsulates the reflective layer and exposes a bottom surface of the reflective layer.
Abstract:
A method for manufacturing a light emitting unit is provided. A semiconductor structure including a plurality of light emitting dice separated from each other is provided. A molding compound is formed to encapsulate the light emitting dice. Each of the light emitting dice includes a light emitting element, a first electrode and a second electrode. A patterned metal layer is formed on the first electrodes and the second electrodes of the light emitting dice. A substrate is provided, where the molding compound is located between the substrate and the light emitting elements of the light emitting dice. A cutting process is performed to cut the semiconductor structure, the patterned metal layer, the molding compound and the substrate so as to define a light emitting unit with a series connection loop, a parallel connection loop or a series-parallel connection loop.
Abstract:
A light-emitting device of the invention includes a base, at least one light-emitting element, a wavelength transferring cover and a heat-conducting structure. The light-emitting element is disposed on the base and electrically connected to the base. The wavelength transferring cover is disposed on the base and covers the light-emitting element. The heat-conducting structure is disposed on the base and directly contacts the wavelength transferring cover.
Abstract:
Provided is a light emitting diode (LED) mounted on a carrier substrate and including a semiconductor epitaxial structure and at least one electrode pad structure. The semiconductor epitaxial structure is electrically connected to the carrier substrate. The electrode pad structure includes a eutectic layer, a barrier layer and a ductility layer. The eutectic layer is adapted for eutectic bonding to the carrier substrate. The barrier layer is between the eutectic layer and the semiconductor epitaxial structure. The barrier layer blocks the diffusion of the material of the eutectic layer in the eutectic bonding process. The ductility layer is between the eutectic layer and the semiconductor epitaxial structure. The ductility layer reduces the stress on the LED produced by thermal expansion and contraction of the substrate during the eutectic bonding process, so as to prevent the electrode pad structure from cracking, and maintain the quality of the LED.
Abstract:
A method for manufacturing a light emitting unit is provided. A semiconductor structure including a plurality of light emitting dice separated from each other is provided. A molding compound is formed to encapsulate the light emitting dice. Each of the light emitting dice includes a light emitting element, a first electrode and a second electrode. A patterned metal layer is formed on the first electrodes and the second electrodes of the light emitting dice. A substrate is provided, where the molding compound is located between the substrate and the light emitting elements of the light emitting dice. A cutting process is performed to cut the semiconductor structure, the patterned metal layer, the molding compound and the substrate so as to define a light emitting unit with a series connection loop, a parallel connection loop or a series-parallel connection loop.
Abstract:
Provided is a light emitting diode (LED) mounted on a carrier substrate and including a semiconductor epitaxial structure and at least one electrode pad structure. The semiconductor epitaxial structure is electrically connected to the carrier substrate. The electrode pad structure includes a eutectic layer, a barrier layer and a ductility layer. The eutectic layer is adapted for eutectic bonding to the carrier substrate. The barrier layer is between the eutectic layer and the semiconductor epitaxial structure. The barrier layer blocks the diffusion of the material of the eutectic layer in the eutectic bonding process. The ductility layer is between the eutectic layer and the semiconductor epitaxial structure. The ductility layer reduces the stress on the LED produced by thermal expansion and contraction of the substrate during the eutectic bonding process, so as to prevent the electrode pad structure from cracking, and maintain the quality of the LED.