Abstract:
Disclosed are a method and an apparatus for repairing composite materials using a solvation process, in which, in the repair of composite materials comprising a matrix resin and a filler fiber, a solution capable of depolymerizing the matrix resin is provided to a portion to be repaired of the composite material to depolymerize the matrix resin. By removing the matrix resin constituting the composite material by solvating it with a solvent while leaving the internal filler fibers, it is possible to secure continuity of the fiber skeleton of the composite material even after the repair, perform very easy repair, and minimize damage to the fiber skeleton.
Abstract:
Functionalized copolymers of isoolefins and conjugated diolefins, methods of preparing the copolymers, and their use as compatibilizers are disclosed. The diolefin monomer units of the co-polymer are modified at the C—C double bond along the backbone of the copolymer to include an oxygen containing functional group such as epoxide, ester or alcohol. The functionalized copolymers improve the wettability of a non-hydrophilic surface towards hydrophilic polymer and allows for the formation of homogenous layers of the hydrophilic polymers. In particular, the spreading of a hydrophilic polymer on a non-hydrophilic substrate is facilitated by applying the co-polymers as an interfacial layer between the two incompatible materials. The resulting coated substrates exhibit resistance to protein adsorption and cell growth after grafting. The co-polymers are especially suited in the coating of biomedical devices where a high degree of uniformity of the coated surface is required.
Abstract:
Shielding coatings are applied to polymer substrates for selective metallization of the substrates. The shielding coatings include a primer component and a hydrophobic top coat. The primer is first applied to the polymer substrate followed by application of the top coat component. The shielding coating is then selectively etched to form an outline of a desired current pattern. A catalyst is applied to the patterned polymer substrate followed by electroless metal plating in the etched portions. The portions of the polymer substrate which contain the shielding coating inhibit electroless metal plating. The primers contain polyamines and the top coat contains hydrophobic alky organic compounds.
Abstract:
A polyester film containing a polyester support having a terminal carboxylic acid value of from 3 to 20 eq/ton and IV of from 0.65 to 0.9 dL/g, and a conductive layer having a surface specific resistance of from 106 to 1014Ω per square with an in-plane distribution of from 0.1 to 20% exhibits an improvement in withstand voltage.
Abstract:
The present invention provides a laminated film comprising a polyester film having a resin layer on at least one side thereof, wherein said resin layer contains at least metal oxide particles (A) having a number average particle diameter of 3 nm or more and 50 nm or less, and an acrylic resin (B), and a component (C1) derived from an oxazoline-based compound and/or a component (C2) derived from a melamine-based compound, and wherein said acrylic resin (B) contains a monomer unit (b1), a monomer unit (b2) and a monomer unit (b3). The present invention provides a laminated film which is excellent in transparency, suppression of interference pattern upon lamination of a high refractive index hard coat layer, adhesive property to a high refractive index hard coat layer, and adhesion under high temperature and high humidity conditions (adhesion under high temperature and high humidity conditions), at a low cost.
Abstract:
Machine (1) for the plasma treatment of containers (3), which comprises: a chamber (5) suitable for receiving a container (3) to be treated, a cover (8) defining a nozzle (9) in the extension of the chamber (5); a duct (14) for depressurization the container (3), which duct opens into the nozzle (9) and connects the latter to a vacuum source (15); a first valve (19) having a closed position, in which it closes off the depressurization duct (14), and an open position, in which it brings the nozzle (9) and the vacuum source (15) into communication; a duct (27) for pressurizing the container (3), separate from the depressurization duct (14), this pressurization duct (27) emerging in the nozzle (9) beyond the depressurization duct (14) and connecting the nozzle (9) to a pressure source (28); and a second valve (29) having a closed position, in which it closes off the pressurization duct (27), and an open position, in which it brings the nozzle (9) and the pressure source (28) into communication.
Abstract:
The present disclosure provides a polyester film based laminate comprising: an outer polyethylene layer; a core layer of a printed polyester film; and an inner polyethylene layer; an article made of said laminate. The printing on the said polyester film based laminate can be a reverse printing. The present disclosure further provides a method for producing a polyester film based laminate.
Abstract:
The present disclosure generally relates to retroreflective sheeting including a topcoat and to methods of making such sheeting. In some embodiments, the retroreflective sheeting includes (1) a first major surface that is a structured surface having a structure imparted by a plurality of prismatic cube corner elements; (2) a second major surface opposite the first major surface, the second major surface being substantially planar and including a polycarbonate; and (3) a topcoat adjacent to at least a portion of the second major surface and the topcoat including a solvent-based composition.
Abstract:
A microstructured article includes a nanovoided layer having opposing first and second major surfaces, the first major surface being microstructured to form prisms, lenses, or other features. The nanovoided layer includes a polymeric binder and a plurality of interconnected voids, and optionally a plurality of nanoparticles. A second layer, which may include a viscoelastic layer or a polymeric resin layer, is disposed on the first or second major surface. A related method includes disposing a coating solution onto a substrate. The coating solution includes a polymerizable material, a solvent, and optional nanoparticles. The method includes polymerizing the polymerizable material while the coating solution is in contact with a microreplication tool to form a microstructured layer. The method also includes removing solvent from the microstructured layer to form a nanovoided microstructured article.
Abstract:
A fabric carcass defines the base of a conveyor belt. A first polymer is coated or otherwise disposed over an exterior side of the fabric carcass to cure with a first layer thickness. The first polymer may be a polyvinyl chloride resin with a plasticizer additive to provide an added robustness to belt at a relatively low cost. Due to deterioration that may occur when certain polyvinyl chloride resins are used as the exterior surface of the conveyor belt, a second polymer is disposed over the cured layer of polyvinyl chloride to define an exterior surface that is configured for resiliently interfacing with a die press of a cutting or stamping station. The second polymer may be a polyester to provide improved resiliency and an exterior surface with better durability than the first polymer.