Abstract:
The invention relates to a bolometer element, a bolometer cell, a bolometer camera, and a method for reading a bolometer cell. The bolometer cell comprises several bolometer elements. Each bolometer element comprises a first bolometer having a first heating resistance for sensing radiation power acting on the element, and a second bolometer having a second heating resistance, and in each bolometer element the first and second bolometers are electrically connected to each other in such a way that the heating resistance (611) of the first bolometer can be biased with the aid of a voltage through the heating resistance of the second bolometer in order to amplify the radiation power detected with the aid of the connection. With the aid of the invention, it is possible to implement an extremely sensitive bolometer camera.
Abstract:
A radiation detecting array 10 has a frequency domain architecture wherein incident radiation is imaged in parallel by an array of radiation detectors 12-16. Each radiation detector has an associated amplitude to frequency conversion device 18-22 for providing output signals wherein the output of each photodetector is represented as a frequency within a uniquely identified band of frequencies, the specific frequency being a function of the output signal amplitude of the photodetector. The readout of one or more selected detectors is accomplished by providing a swept frequency band or bands associated with the desired detector or detectors and mixing the detector frequencies with the swept band. The frequency representing the photodetector output may be input directly to a low dispersion transmission line 30. The unit cells may include radiation detectors comprised of superconducting material and also superconducting components that inherently manifest current or voltage to frequency conversion characteristics in accordance with the Josepson effect. An array having high temperature superconducting components includes photodetectors 60, associated voltage to frequency convertors 64 and a transmission line 70 integrated upon a common substrate.
Abstract:
The present invention discloses the low-stress niobium nitride (NbN) superconducting thin film and preparation method and application thereof. The preparation method includes the following steps: providing the metal Nb target and the Si-based substrates, fixing the Si-based substrate at room temperature, adjusting the mass flow ratio of N2/Ar to 20%-50%, the sputtering power to 50-400 W and the deposition pressure to 3.0-10.0 mTorr, NbN superconducting thin films with a stress range of-500 MPa˜500 MPa and a thickness of 70-150 nm were deposited on Si-based substrates. By synergistically controlling the mass flow rate ratio of N2/Ar, sputtering power, and deposition pressure, low stress NbN superconducting thin films can be easily and efficiently prepared. The stress range of the prepared NbN superconducting thin films meets the preparation requirements of superconducting dynamic inductance detectors, and can be mass-produced.
Abstract:
An omnidirectional measurement system for a time-varying characteristic of atmospheric vapor radiation includes an antenna and calibrator assembly, a receiver assembly, a room temperature IF assembly, and a data acquisition and system control assembly. Atmospheric vapor features a wide profile and strong radiation in a frequency band of 183 GHz, and is often seen in the characteristic measurement of atmospheric vapor in high-altitude areas. The omnidirectional measurement system combines a superconductor-insulator-superconductor (SIS) mixer with high detection sensitivity in the frequency band of 183 GHz with a structure that integrates pitch scanning, omnidirectional scanning, and automatic calibration to achieve fast and high-precision omnidirectional scanning measurement of the time-varying characteristic of atmospheric vapor radiation. The omnidirectional measurement system has a pitch adjustment-based fast omnidirectional scanning function, and can measure the time-varying characteristic of atmospheric vapor radiation with higher precision and higher temporal resolution through the SIS mixer with higher sensitivity.
Abstract:
An electromagnetic sensor for use in a variety of applications requiring extremely high sensitivity, such as measuring power and characteristics of incident electromagnetic radiation includes a superconducting layer that carries an exchange field for providing a spin splitting effect of charge carriers in the superconducting layer, a metal electrode, and an insulating layer arranged between the superconducting layer and metal electrode to form a spin filter junction therebetween. The electromagnetic sensor provides an antenna including a wave collecting element, in contact with the superconducting layer to convey thereinto external electromagnetic waves that are generated by an external source. An electric measurement device provides an output signal responsive to the amplitude and frequency of the external electromagnetic waves, and contacts the metal electrode to measure an electric current or voltage caused by the spin splitted charge carrier flow from the superconducting layer through the spin filter junction into the metal electrode.
Abstract:
A system and method for characterizing incident ions are provided. The method includes positioning a transmission line detector to receive incident ions, the transmission line detector comprising a superconducting meandering wire defining a detection area for incident ions, and applying a bias current to the transmission line detector. The method also includes detecting a first signal produced in the transmission line detector due to an ion impacting the detection area, and detecting a second signal produced in the transmission line detector due to the ion impacting the detection area. The method further includes analyzing the first signal and the second signal to characterize the ion. In some aspects, the method further includes identifying a delay between the first signal and the second signal to determine, using the identified delay, a location of the ion on the detection area.
Abstract:
A bolometer is described. A bolometer includes a superconductor-insulator-semiconductor-superconductor structure or a superconductor-insulator-semiconductor-insulator-superconductor structure. The semiconductor comprises an electron gas in a layer of silicon, germanium or silicon-germanium alloy in which valley degeneracy is at least partially lifted. The insulator or a one or both of the insulators may comprise a layer of dielectric material. The insulator or a one or both of the insulators may comprise a layer of non-degenerately doped semiconductor.
Abstract:
A superconducting nanowire avalanche photodetector (SNAP) with improved high-speed performance. An inductive element may be coupled in series with at least two parallel-coupled nanowires. The nanowires may number 5 or fewer, and may be superconducting and responsive to even a single photon. The series inductor may ensure current diverted from a photon-absorbing nanowire propagates to other nanowires and become amplified. The series inductance may be less than 10 times the nominal inductance per nanowire, and may also be larger than a minimum inductance to avoid spurious outputs in response to a photon absorption. The series inductance may be configured to achieve a desired tradeoff between SNAP reset time and spurious outputs. For example, the series inductance may be configured achieve minimum reset time or maximum bias margin, subject to user-defined constraints. By appropriately configuring the series inductance, a systematic method of designing improved SNAPs may be provided.