Abstract:
In one embodiment, the invention is spectrophotometer with a light emitting diode illuminator. In one embodiment, a spectrophotometer for characterizing a reflectance spectrum of a specimen includes an optical assembly for illuminating the specimen, where the optical assembly includes at least one light emitting diode. A measurement head is coupled to the optical assembly for collecting light reflected by the specimen, and a spectrum analyzer is coupled to the measurement head for performing spectral analysis of the collected light into a plurality of spectral bands. A reference channel provides illumination from the optical assembly to the spectrum analyzer, while a test channel provides the collected light from the measurement head to the spectrum analyzer.
Abstract:
A method for analyzing the visual coarseness of a paint film comprising effect pigments by means of a measuring device having a cavity with reflective inner walls and a sample opening, the device further comprising illumination means for illumination of the cavity and a digital imaging device directed from the cavity to the sample opening and arranged at a distance from the centre normal of the sample opening, the method comprising the following steps: presenting a sample of the paint film to the cavity via the sample opening; illuminating the cavity; activating the imaging device to record an image of the sample; communicating the recorded image data to a computer programmed with image analysis software to analyze the recorded image. The optical axis of the imaging device is set at an angle of 3-12 degrees with the centre normal of the sample opening.
Abstract:
The present invention provides a color recipe calculation method for matt finished, solid color shades, by means of which it is possible to determine the proportion of matting agents in a color recipe in a manner decoupled from the actual calculation of the recipe and is based on a conventional spectrophotometric characterization of a matt sample using a standardised 45°/0° measurement geometry along with an established gloss measurement, or alternatively using a spectrophotometer equipped with a d/8° measurement geometry and analyzing readings taken with the specular component included and excluded.
Abstract:
A method of producing a finish for a selected wood substrate, wherein the finish provides the selected wood substrate with a color that matches the color of a target object. In accordance with the method, calculations are performed to determine the quantities of at least one group of colorants required to produce a semitransparent wood stain from a vehicle, wherein when the semitransparent wood stain is applied to the selected wood substrate, the selected wood substrate will have a color that matches the target object. The calculations are performed using reflectance measurements of the target object obtained using a spectrophotometer and previously obtained spectral data of the colorants as applied to at least one type of wood. The colorants used to form the semitransparent wood stain do not include a white colorant.
Abstract:
A method of verifying the color and tinting strength of a manufactured batch of a semi-transparent wood stain. In accordance with the method, a standard batch of the wood stain is formed and then mixed with a specified amount of a white colorant to form a standard measurement batch. A test sample of the manufactured batch is obtained and is also mixed with a specified amount of the white colorant to form a test measurement sample. Layers of the standard measurement batch and the test measurement sample are formed on the substrates and complete hide obtained. Reflectance measurements of the layers are made using a spectrophotometer. The reflectance measurements are used to determine if the color and the tinting strength of the manufactured batch is within an acceptable deviation range of the color and tinting strength of the standard batch. This allows for objective color difference and tint strength difference calculations, and adjustments can be made therefrom, therefore eliminating the past visual trial and error methods.
Abstract:
A spectrometer apparatus for determining an optical characteristic of an object or material is disclosed. A probe is positionable to be in proximity to the object or material. First and second receivers are provided on the probe. Light from one or more first receivers is coupled to one or more first optical sensors via a spectral separation implement. Light from one or more second receivers is coupled to one or more second sensors without spectral separation of the light. A light source provides light to the object or material via the probe. A processor coupled to receive one or more signals from the first and second sensors determines the optical characteristic of the object or material and determines a physical position property of the probe with respect to the object or material or a non-color optical property of the object or material. The physical position property may be a distance or angular position of the probe with respect to a surface of the object or material. The non-color optical property may be translucence, gloss, gray level and/or surface texture.
Abstract:
A method to change the color of hair. The method includes measuring an initial reflectance spectrum of a sample of the hair and analyzing a contribution of a plurality of natural hair factors to the initial reflectance spectrum. The method also includes calculating a hair treatment based on another reflectance spectrum. A system to measure a reflectance spectrum of a sample includes an integrating sphere having a sampling port and an inner surface and a window disposed near to the sampling port. The window is configured for being placed in close contact with the sample. The system also includes a light source configured to project light onto the sample via the window and a light detector configured to analyze light reflected from the inner surface to produce the reflectance spectrum of the sample.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Low cost and small form factor spectrometers, and methods for manufacturing the same, also are disclosed.
Abstract:
A color measurement instrument with improved sample targeting or positioning. The system includes an integrating sphere, a beam splitter, a video camera, and a spectrograph. The beam splitter is aligned with the viewing port of the spectrophotometer to deliver the light reflected from the sample to both the video camera and the spectrograph. The video camera provides an image of the position of the sample with respect to the viewing port of the sphere, enabling the visual observation and evaluation of the sample position prior to use of the spectrophotometer.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Low cost and small form factor spectrometers, and methods for manufacturing the same, also are disclosed.