Abstract:
Provided is a device for optimizing a diffusion section of an electron beam, comprising two groups of permanent magnets, a magnetic field formed by the four magnetic poles extending the electron beam in a longitudinal direction, and compressing the electron beam in a transverse direction, so that the electron beam becomes an approximate ellipse; another magnetic field formed by the eight magnetic poles optimizing an edge of a dispersed electron-beam bunch into an approximate rectangle; by controlling the four longitudinal connection mechanisms so that the upper magnetic yoke and the lower magnetic yoke of the first group of permanent magnets move synchronously towards the center thereof thereby longitudinally compressing the electron beam in the shape of an approximate ellipse, and the upper magnetic yoke and the lower magnetic yoke of the second group of permanent magnets move synchronously towards the center thereof thereby longitudinally compressing the electron beam in the shape of an approximate rectangle, and the process of longitudinal compression is repeated until a longitudinal size of the electron-beam bunch is reduced to 80 mm. The invention is capable of reasonably compressing a longitudinal size of an electron-beam bunch after diffusion to approximately 80 mm, which ensures optimum irradiation uniformity and efficiency, and enables the longitudinal size to be within the range of a conventional titanium window.
Abstract:
A system includes an integrated circuit (IC) design data base having a feature, a source configured to generate a radiation beam, a pattern generator (PG) including a mirror array plate and an electrode plate disposed over the mirror array plate, wherein the electrode plate includes a lens let having a first dimension and a second dimension perpendicular to the first dimension with the first dimension larger than the second dimension so that the lens let modifies the radiation beam to form the long shaped radiation beam, and a stage configured secured the substrate. The system further includes an electric field generator connecting the minor array plate. The mirror array plate includes a mirror. The mirror absorbs or reflects the radiation beam. The radiation beam includes electron beam or ion beam. The second dimension is equal to a minimum dimension of the feature.
Abstract:
An aberration correction device includes, between a TEM objective lens and an STEM objective lens, a transfer lens group for transferring a coma-free surface of the TEM objective lens to a multipolar lens, a transfer lens group for transferring the coma-free surface of the TEM objective lens to a multipolar lens, and a transfer lens for correcting fifth-order spherical aberration of the STEM objective lens.
Abstract:
An objective lens for use in probe-forming particle-optical columns such as focused ion beam equipment, scanning electron microscopes, and helium microscopes is described. It comprises two interleaved (quadrupole/octopole) lenses and two or three ancillary octopole lenses, and is capable of simultaneous compensation of spherical (Cs) and chromatic (Cc) aberrations of the objective lens alone or of the complete particle-optical column. Additional apparatus comprising a gridded aperture and position-sensitive detector is specified, together with a method to measure and minimize all of the five independent third-order aberration coefficients of the objective lens.
Abstract:
To provide an aberration correction device and a charged particle beam device employing same that are jointly usable with a tunneling electron microscope (TEM) and a scanning tunneling electron microscope (SEM), an aberration correction device (1) comprises, between a TEM objective lens (6a) and an STEM objective lens (6b): a transfer lens group (4, 5), for transferring a coma-free surface (11) of the TEM objective lens (6a) to a multipolar lens (3); a transfer lens group (7, 8) for transferring the coma-free surface of the TEM objective lens to a multipolar lens (2); and a transfer lens (13) for correcting fifth-order spherical aberration of the STEM objective lens (6b).
Abstract:
A cathode shield comprising a shield body and tabs for defining a focal spot length. The tabs can be integral with the shield body and spaced a distance apart from each other. The tabs can at least partially define the focal spot length of an electron source associated with a cathode shield. The cathode shield can further comprise means for positioning the cathode shield relative to a component in a cathode assembly.
Abstract:
A system for reducing aberration effects in a charged particle beam. The system includes a source of charged particles, such as electrons or ions, and various building blocks for operating on the charged particle beam to generate a desired particle beam pattern. These building blocks can include at least one of a uniform magnetic field component and a uniform electrostatic field component arrangeable in different combinations, enabling coefficients of spherical and chromatic aberration to be canceled out thereby providing a charged particle beam having greatly diminished aberration.
Abstract:
Provided is a charged-particle-beam device capable of simultaneously cancelling out a plurality of aberrations caused by non-uniform distribution of the opening angle and energy of a charged particle beam. The charged-particle-beam device is provided with an aberration generation lens for generating an aberration due to the charged particle beam passing off-axis, and a corrective lens for causing the trajectory of the charged particle beam to converge on the main surface of an objective lens irrespective of the energy of the charged particle beam. The main surface of the corrective lens is disposed at a crossover position at which a plurality of charged particle beams having differing opening angles converge after passing through the aberration generation lens.
Abstract:
Provided is a device for optimizing a diffusion section of an electron beam, comprising two groups of permanent magnets, a magnetic field formed by the four magnetic poles extending the electron beam in a longitudinal direction, and compressing the electron beam in a transverse direction, so that the electron beam becomes an approximate ellipse; another magnetic field formed by the eight magnetic poles optimizing an edge of a dispersed electron-beam bunch into an approximate rectangle; by controlling the four longitudinal connection mechanisms so that the upper magnetic yoke and the lower magnetic yoke of the first group of permanent magnets move synchronously towards the center thereof thereby longitudinally compressing the electron beam in the shape of an approximate ellipse, and the upper magnetic yoke and the lower magnetic yoke of the second group of permanent magnets move synchronously towards the center thereof thereby longitudinally compressing the electron beam in the shape of an approximate rectangle, and the process of longitudinal compression is repeated until a longitudinal size of the electron-beam bunch is reduced to 80 mm. The invention is capable of reasonably compressing a longitudinal size of an electron-beam bunch after diffusion to approximately 80 mm, which ensures optimum irradiation uniformity and efficiency, and enables the longitudinal size to be within the range of a conventional titanium window,
Abstract:
A system includes an integrated circuit (IC) design data base having a feature, a source configured to generate a radiation beam, a pattern generator (PG) including a mirror array plate and an electrode plate disposed over the mirror array plate, wherein the electrode plate includes a lens let having a first dimension and a second dimension perpendicular to the first dimension with the first dimension larger than the second dimension so that the lens let modifies the radiation beam to form the long shaped radiation beam, and a stage configured secured the substrate. The system further includes an electric field generator connecting the mirror array plate. The mirror array plate includes a mirror. The mirror absorbs or reflects the radiation beam. The radiation beam includes electron beam or ion beam. The second dimension is equal to a minimum dimension of the feature.