Abstract:
The present invention relates application of conformal coatings made up of nano-fiber, nano-particle, and/or nano-capsule materials to be applied on electrical component parts in general and printed circuit boards (PCB) in particular. A conformal coating material, such as Parlyne, can be combined with nano-materials to produce desired results. Benefits of this invention include enhancement of conventional conformal coatings performance in terms of properties such as mechanical, electrical, magnetic and in particular to prevent or obstruct the growth of tin whiskers or any other manufacturing defect that can develop on the surface of a PCB.
Abstract:
A wiring substrate includes: a connection pad having a first surface; a protective insulation layer formed on the first surface of the connection pad and having an opening portion therein, wherein a portion of the first surface of the connection pad is exposed from the opening portion; a metal layer having a lower surface facing the first surface of the connection pad and an upper surface opposite to the lower surface and formed on the first surface of the connection pad which is exposed from the opening portion, the metal layer including a raised portion that extends upward from the upper surface of the metal layer in a peripheral portion thereof; and a bump electrode formed on the upper surface of the metal layer.
Abstract:
Methods and apparatus for reducing the occurrence of metal whiskers on surfaces are disclosed herein. In particular, the present disclosure teaches providing at least one source of electromagnetic energy to emit energy to reduce the occurrence of metal whiskers on a surface.
Abstract:
A wiring board includes an insulating substrate having a side surface including a protrusion portion or a recess portion and a lower surface having a metal member bonded thereto; a wiring conductor embedded in the insulating substrate and having an exposed portion partially exposed above the protrusion portion or the recess portion from the side surface of the insulating substrate; and a metal member bonded to the lower surface of the insulating substrate. It is possible to suppress occurrence of ion migration between the wiring conductor and the metal member by increasing a distance between the exposed portion and the metal member without increasing a thickness of the wiring board.
Abstract:
A tin or tin alloy plating film surface treatment aqueous solution that can reduce whiskers on the surface of a tin or tin alloy plating film, and can provide a favorable tin or tin alloy plating film using a simple method for tin or tin alloy plating films that are used on electronic components.
Abstract:
An array substrate comprises a substrate provided with a circuit pattern and covering layers that cover the upper surfaces and side surfaces of respective portions of the circuit pattern.
Abstract:
A method of forming a wiring board comprises: a step of forming a receptive layer having a porous structure on a substrate; a step of forming wiring portions in a desired conductive pattern on a surface of the receptive layer by ejecting a colloidal metal solution for drawing by an ink-jet system based on image date of the conductive pattern; and a step of performing a migration-proof treatment on at least part of the receptive layer exposed between mutually adjacent wiring portions.
Abstract:
A printed wiring board includes a first conductive paste forming a wiring pattern, and a second conductive paste including kneaded first conductive material and second conductive material whose particles are finer than those of the first conductive material.
Abstract:
A wiring substrate is provided with a substrate, a conductive circuit formed on a surface of the substrate, and an insulating layer which covers the conductive circuit. In a fitting portion of the wiring substrate, the insulating layer is formed with an opening portion through which a portion of the conductive circuit is exposed or displayed as an exposed surface. On the exposed surface of the conductive circuit, an electrode layer is formed which is made of a conductive member. A bottom surface of the electrode layer is connected to the conductive circuit. An upper surface of the electrode layer is extended in the widthwise direction W of wirings of the conductive circuit so as to cover even a part of the insulating layer.
Abstract:
A technique for processing an electronic apparatus (e.g., manufacturing an assembled circuit board, treating an assembled circuit board, etc.) involves applying encasement material to an area of the circuit board assembly while leaving at least a portion of the circuit board assembly exposed. The technique further involves causing the applied encasement material to harden (e.g., heating the encasement material in a curing oven, applying radiation, providing a chemical catalyst, etc.). Application and hardening of the encasement material may take place shortly after circuit board assembly (e.g., by automated equipment at a manufacturing facility in order to treat newly assembled boards) or at some later time in the field (e.g., by a technician servicing a legacy board).