Abstract:
A patch panel (100) for use with infrastructure management systems that utilizes a plurality of cables interconnected to end-user devices and work area outlets, and integrated circuits to monitor the status of these end-user devices and outlets includes a pair of circuit boards. A plurality of connective jacks (31) are mounted on the first (36) of the two circuit boards, and are interconnected to other network devices. Wires from the jacks extend to and connect with network devices and the first circuit board has a plurality of first integrated circuits (45) mounted thereon which monitor the status of the network devices connected to the jacks. The second circuit board (49) is spaced apart from the first circuit board and it includes a plurality of second integrated circuits (52) that convey the status information obtained from the network work area outlets on the network to network devices, such as switches and scanners of the network (104).
Abstract:
A structure for use with data network management systems uses a plurality of cables interconnecting patch panels, network devices and end-user devices and further utilizes integrated circuits to monitor the status of these end-user devices. The structure includes respective primary (36) and secondary (45) circuit boards. A plurality of connective jacks (31) are mounted on the primary circuit board and these jacks are interconnected to switches and other patch panels within the network. Wires from the jacks extend to and connect with end-user devices and a secondary circuit board is spaced apart from the primary circuit board so as to define a hollow nest (42) within the patch panel assembly that houses and protects integrated circuits (45, 52) and the like.
Abstract:
A hybrid structure of multi-layer substrates comprises a first multi-layer substrate and a second multi-layer substrate. The first multi-layer substrate stacks up first metal layers, first dielectric layers alternately and has VIAs. A border district of a first metal layer connects with a border district of the corresponding first dielectric layer. The border districts are separated from adjacent first metal layers and adjacent first dielectric layers. The second multi-layer substrate stacks up second metal layers and second dielectric layers alternately. A border district of a second metal layer connects with a border district of the corresponding second dielectric layer. The border districts are separated from adjacent second metal layers and adjacent second dielectric layers. The VIAs are located at the border districts of the first dielectric layers and each VIA has electric conductor therein to connect one first metal layer with one second metal layer.
Abstract:
A hybrid structure of multi-layer substrates comprises a first multi-layer substrate and a second multi-layer substrate. The first multi-layer substrate stacks up first metal layers, first dielectric layers alternately and has VIAs. A border district of a first metal layer connects with a border district of the corresponding first dielectric layer. The border districts are separated from adjacent first metal layers and adjacent first dielectric layers. The second multi-layer substrate stacks up second metal layers and second dielectric layers alternately. A border district of a second metal layer connects with a border district of the corresponding second dielectric layer. The border districts are separated from adjacent second metal layers and adjacent second dielectric layers. The VIAs are located at the border districts of the first dielectric layers and each VIA has electric conductor therein to connect one first metal layer with one second metal layer.
Abstract:
A female circuit board for use with a male circuit board has electrically conductive projections. The female circuit board includes a flexible insulating film. The flexible insulating film includes insertion portions into which the conductive projections of the male circuit board are allowed to be inserted. Each of the insertion portions includes a plurality of slits communicating with each other at the center of each of the insertion portions. The flexible insulating film further includes electrically conduction portions for making contact with the conductive projections to come into conduction with the male circuit board. The conduction portions are disposed around the insertion portions on the surface of the female circuit board facing the male circuit board when the female circuit board is in contact with the male circuit board. The conduction portions conform in shape to the insertion portions.
Abstract:
In a connection structure of an electronic component and a wired circuit board, the electronic component includes a plurality of external terminals. The wired circuit board includes a metal supporting board, an insulating base layer formed on the metal supporting board, and a conductive pattern formed on the insulating base layer. The conductive pattern includes a plurality of terminal portions for connection with the plurality of external terminals. The electronic component and the wired circuit board are disposed such that the plurality of external terminals and the plurality of terminal portions face each other. The wired circuit board is bent such that the conductive pattern is warped, and by the reaction force of the warping, the terminal portions and the external terminals are abutted, and the electronic component and the wired circuit board are electrically connected.
Abstract:
A hybrid structure of multi-layer substrates comprises a first multi-layer substrate and a second multi-layer substrate. The first multi-layer substrate stacks up first metal layers, first dielectric layers alternately and has VIAs. A border district of a first metal layer connects with a border district of the corresponding first dielectric layer. The border districts are separated from adjacent first metal layers and adjacent first dielectric layers. The second multi-layer substrate stacks up second metal layers and second dielectric layers alternately. A border district of a second metal layer connects with a border district of the corresponding second dielectric layer. The border districts are separated from adjacent second metal layers and adjacent second dielectric layers. The VIAs are located at the border districts of the first dielectric layers and each VIA has electric conductor therein to connect one first metal layer with one second metal layer.
Abstract:
A circuit board with a simple structure is manufactured. A circuit board 19 has thereon a foil circuit 21 provided on a synthetic resin plate 20 formed by injection molding, made of a copper foil, and having a pattern different for circuit board 19. Anchor pins 20a projecting upward are provided on the resin plate 20 and passed through pinholes made in the foil circuit 21. The foil circuit 21 are positioned and secured to the resin plate 20. In a required portion of the resin plate 20, a terminal insertion hole 20c is provided, and receiving terminal 22 is secured to the required portion of the terminal insertion hole 20c and connected to the foil circuit 21.
Abstract:
A laminate includes base material layers and interlayer constraining layers disposed therebetween. The base material layers are formed of a sintered body of a first powder including a glass material and a first ceramic material, and the interlayer constraining layer includes a second powder including a second ceramic material that will not be sintered at a temperature for melting the glass material, and is in such a state that the second powder adheres together by diffusion or flow of a portion of the first powder including the glass material included in the base material layer at the time of baking. The incorporated element is in such a state that an entire periphery thereof is covered with the interlayer constraining layer.
Abstract:
A circuit board may include first and second sides, a plurality of circuit board layers between the sides, and a plurality of signal traces located in respective circuit board layers. The circuit board layers and the signal traces may extend from a first component connection region at the first side of the circuit board to a second component connection region at the first side of the circuit board. The signal traces may thus form stubless signal paths through the circuit board between the component connection regions. Of course, many alternatives, variations, and modifications are possible without departing from this embodiment.