Abstract:
A layer allocating apparatus for a multi-layer circuit board is disclosed. In a preferred embodiment, the layer allocating apparatus arranged from top to bottom as a component layer, a ground layer, a power layer, and a solder layer. The powerlayer is sliced into a plurality of reference ground areas each is located at somewhere to correspond to signal layout areas of the solder layer, so as to allow signal lines of the component layer and solder layer to take reference to the reference ground areas on the adjacent power layer. The power layer also includes a plurality of power layers each provides different operating voltages, and electrically couples with corresponding power layouts of the solder layer and component layer through vias, thereby enlarging the total area of power planes, so as to provide a table power source and attenuate the ground/bounce effect.
Abstract:
A system for delivering power to a processor enables a DC-to-DC converter substrate to be secured to the processor carrier in the Z-axis direction. The ability to assemble the converter to the processor in this way facilitates assembly compared to systems in which the converter is plugged in to the processor carrier in the direction substantially parallel to the surface of the motherboard.
Abstract:
A DC bus for use in a power module has a positive DC conductor bus plate parallel with a negative DC conductor bus plate. One or more positive leads are connected to the positive bus and are connectable to a positive terminal of a power source. One or more negative leads are connected to the negative bus and are connectable to a negative terminal of a power source. The DC bus has one or more positive connections fastenable from the positive bus to the high side of a power module. The DC bus also has one or more negative connections fastenable from the negative bus to the low side of the power module. The positive bus and negative bus permit counter-flow of currents, thereby canceling magnetic fields and their associated inductances, and the positive and negative bus are connectable to the center portion of a power module.
Abstract:
A printed circuit board having multiple layers, includes: a copper film for removing signal interference and noise and matching impedance, formed between pads of a lowermost layer which are connected to of an uppermost layer.
Abstract:
A method and apparatus for drastically reducing timing uncertainties in clocked digital circuits simply, at virtually no cost, and using only standard clock drivers and simple, inexpensive electrical components is described. The method includes the steps of minimizing timing uncertainties by controlling both clock skew and clock jitter. Intrinsic clock skew is eliminated by ganging the outputs of a multi-line clock together onto a capacitive metal island disposed on a printed circuit board (PCB). Extrinsic clock skew is controlled through the use of wide, relatively high-capacitance traces of matched length and disposed on a single, common signal layer of the PCB, each leading to a respective receiver circuit and terminated identically. Clock jitter is controlled by electrically isolating a region of the PCB, disposing the clock driver in the region in such a way as to minimize noise, and providing quiet local power and ground to the region.
Abstract:
A method and apparatus for drastically reducing timing uncertainties in clocked digital circuits simply, at virtually no cost, and using only standard clock drivers and simple, inexpensive electrical components is described. The method includes the steps of minimizing timing uncertainties by controlling both clock skew and clock jitter. Intrinsic clock skew is eliminated by ganging the outputs of a multi-line clock together onto a capacitive metal island disposed on a printed circuit board (PCB). Extrinsic clock skew is controlled through the use of wide, relatively high-capacitance traces of matched length and disposed on a single, common signal layer of the PCB, each leading to a respective receiver circuit and terminated identically. Clock jitter is controlled by electrically isolating a region of the PCB, disposing the clock driver in the region in such a way as to minimize noise, and providing quiet local power and ground to the region.
Abstract:
A printed circuit board capable of suppressing radiation noise efficiently includes a first conductive layer where a plurality of power lines are provided at predetermined spacing along one direction, a second conductive layer where a plurality of power lines are provided at predetermined spacing along a direction orthogonal to the one direction, and a plurality of plated through holes for connecting the power lines on the first conductive layer and the power lines on the second conductive layer at the overlapping points of those lines. The power lines contain thin lines and thick lines spaced between a plurality of the thin lines. The predetermined spacing is determined based on a rising time or falling time of the output signal of the IC to be mounted on the circuit board.
Abstract:
A print for control modules of contact-free control and regulating systems comprising an insulating carrier plate having one portion of one surface adjacent the control inputs provided with a plurality of anti-interference filters. The number of filters is the same as the number of control inputs. The other portion of the one surface of the plate is provided with the same number of threshold value stages connected to the filters. The other surface of the carrier plate has a metal layer thereon which is electrically interrupted in accordance with the boundary between the first and second portions of the one surface thereof. The portion of the layer corresponding to the first portion is connected to ground and the portion of the layer corresponding to the second portion is connected to a reference potential.
Abstract:
Embedding a discrete electrical device in a printed circuit board (PCB) includes: providing a vertical via as a blind hole from a horizontal surface of the PCB to an electrically conductive structure in a first layer, the first layer being one layer of a first core section of a plurality of core sections vertically arranged above each other, each core section including lower and upper conductive layers, and a non-conductive layer in between; inserting the electrical device into the via, with the device extending within at least two of the core sections; establishing a first electrical connection between a first electrical device contact device and the electrically conductive structure in the first layer; and establishing a second electrical connection between a second electrical device contact and a second layer, the second layer being one of the electrically conductive layers of a second horizontal core section.
Abstract:
An electronic device and semiconductor package include a printed circuit board and a semiconductor device mounted thereon. The printed circuit board includes one or more thermally conductive vias for dissipating heat.