Abstract:
Provided is a display panel including a loop-shaped conductive path which is manufactured by performing a conductive ink jetting process and a high-degree vacuum removal process to effectively vaporizing a solvent in a conductive ink line at lower temperature than the boiling point at atmospheric pressure of the solvent. The conductive path manufactured as such does not allow a stain or a trace, such as a pull-back region, to be left around the conductive path. Thus, it is possible to obtain the loop-shaped conductive path having an initially intended design without being damaged during a process.
Abstract:
A printed wiring board includes an insulating layer, a first conductor layer embedded into a first surface of the insulating layer and including connecting portions to connect an electronic component, a second conductor layer projecting from a second surface of the insulating layer, a solder resist layer covering the first conductor layer and having an opening structure exposing the connecting portions, a barrier metal layer formed on the connecting portions such that the barrier layer is projecting from the first surface of the insulating layer, and metal posts formed on the barrier layer such that the metal posts are positioned on the connecting portions, respectively. Each metal post has width which is greater than width of a respective connecting portion, and the barrier metal layer includes a metal material which is different from a metal material forming the metal posts and a metal material forming the first conductor layer.
Abstract:
A printed wiring board includes an insulation layer, conductive pads formed on the insulation layer and positioned to connect an electronic component, and a conductive wiring pattern including first and second conductive patterns and formed on the insulation layer such that the conductive wiring pattern is extending between the conductive pads. The first pattern includes first wiring lines, the second pattern includes second wiring lines, the first and second conductive patterns are formed such that the first wiring lines and the second wiring lines are alternately arrayed on the insulation layer, each of the first wiring lines includes a first metal layer formed on an interface with the insulation layer, each of the second wiring lines includes a second metal layer formed on an interface with the insulation layer, and the first metal layer includes a metal material which is different from a metal material forming the second metal layer.
Abstract:
A printed circuit board for a semiconductor package including a printed circuit board body, a plurality of ball lands on one surface of the printed circuit board body, a first plating layer on a portion of each of the ball lands, and a second plating layer on another portion of each of the ball lands may be provided. An upper surface of the first plating layer may be coplanar with an upper surface of the second plating layer.
Abstract:
A method of producing a printed circuit board includes: forming a metal layer on a support plate; forming a mask layer on the metal layer; forming a pattern plating having a stem as plating up to a level of the mask layer, and a cap as a portion of plating exceeding the mask layer and having an outgrowth lying over the surface of the mask layer; laminating an insulating base on a conductive circuit board constituted by the support plate, the metal layer and the pattern plating to form a circuit board intermediate in which the pattern plating is buried in the base; removing the support plate and the metal layer to form an exposed surface; and mechanically polishing the exposed surface until the stem of the pattern plating is removed, to increase the width of the conductive pattern on the exposed surface.
Abstract:
An electrical circuit structure can include a first trace formed using a first conductive layer and a second trace formed using a second conductive layer. The first trace can be vertically aligned with the second trace. The electrical circuit structure can include a via segment formed of conductive material in a third conductive layer between the first conductive layer and the second conductive layer. The via segment can contact the first trace and the second trace forming a first conductor structure configured to convey an electrical signal in a direction parallel to the first conductive layer.
Abstract:
A flexible printed circuit board assembly includes a circuit board main body and a connection terminal provided at one side of the circuit board main body. The connection terminal has a shape in which a width of a portion farther from the circuit board main body is greater than a width of a portion closer to the circuit board main body.
Abstract:
Disclosed herein are a printed circuit board and a method of manufacturing the same. In detail, according to a representative preferred embodiment of the present invention, it is possible to protect a line width of a circuit pattern and suppress an undercut by providing the printed circuit board in which etched grooves are formed at both sides of a seed layer of the circuit pattern.
Abstract:
The present invention relates to electrically active devices (e.g., capacitors, transistors, diodes, floating gate memory cells, etc.) having dielectric, conductor, and/or semiconductor layers with smooth and/or dome-shaped profiles and methods of forming such devices by depositing or printing (e.g., inkjet printing) an ink composition that includes a semiconductor, metal, or dielectric precursor. The smooth and/or dome-shaped cross-sectional profile allows for smooth topological transitions without sharp steps, preventing feature discontinuities during deposition and allowing for more complete step coverage of subsequently deposited structures. The inventive profile allows for both the uniform growth of oxide layers by thermal oxidation, and substantially uniform etching rates of the structures. Such oxide layers may have a uniform thickness and provide substantially complete coverage of the underlying electrically active feature. Uniform etching allows for an efficient method of reducing a critical dimension of an electrically active structure by simple isotropic etch.
Abstract:
A board interconnection structure having a first printed wiring board in which a first conductive circuit is arranged on a first insulating layer, the first conductive circuit having, on an end portion thereof, a first connection terminal in which an upper surface width is narrower than a bottom surface width; a second printed wiring board in which a second conductive layer having a second connection terminal is arranged on a second insulating layer; and a connection layer that forms fillets along longitudinal side surfaces of the first connection terminal, and interconnects the first connection terminal and the second connection terminal. The first connection terminal may have a projection portion.