Abstract:
An electromechanical device may include a first substrate, a second substrate, a connector, and a protector. The connector may be formed of a first dielectric material and may be positioned between the first substrate and the second substrate. A first side of the connector may directly contact the first substrate. The protector may be formed of a second dielectric material and may directly contact a second side of the connector.
Abstract:
A micro-structured atomic source system is described herein. One system includes a silicon substrate, a dielectric diaphragm, wherein the dielectric diaphragm includes a heater configured to heat an atomic source substance, an intermediary material comprising a chamber configured to receive the atomic source substance, and a guide material configured to direct a flux of atoms from the atomic source substance.
Abstract:
Systems and methods that protect CMOS layers from exposure to a release chemical are provided. The release chemical is utilized to release a micro-electro-mechanical (MEMS) device integrated with the CMOS wafer. Sidewalls of passivation openings created in a complementary metal-oxide-semiconductor (CMOS) wafer expose a dielectric layer of the CMOS wafer that can be damaged on contact with the release chemical. In one aspect, to protect the CMOS wafer and prevent exposure of the dielectric layer, the sidewalls of the passivation openings can be covered with a metal barrier layer that is resistant to the release chemical. Additionally or optionally, an insulating barrier layer can be deposited on the surface of the CMOS wafer to protect a passivation layer from exposure to the release chemical.
Abstract:
A method for the fabrication of thin-film transistors together with micromechanical components, other active electrical components or both on an amorphous or polycrystalline substrate includes disposing the thin-film transistors and the other components on different areas of the substrate.
Abstract:
Disclosed herein are methods of making micropores of a desired height and/or width between two isotropic wet etched features in a substrate which comprises single-level isotropic wet etching the two features using an etchant and a mask distance that is less than 2× a set etch depth. Also disclosed herein are methods using the micropores and microfluidic devices comprising the micropores.
Abstract:
MEMS structures and methods utilizing a locker film are provided. In an embodiment a locker film is utilized to hold and support a moveable mass region during the release of the moveable mass region from a surrounding substrate. By providing additional support during the release of the moveable mass, the locker film can reduce the amount of undesired movement that can occur during the release of the moveable mass, and preventing undesired etching of the sidewalls of the moveable mass.
Abstract:
An example provides a method including sputtering a metal catalyst onto a substrate, exposing the substrate to a solution that reacts with the metal catalyst to form a plurality of pores in the substrate, and etching the substrate to remove the plurality of pores to form a recess in the substrate.
Abstract:
A method for the fabrication of thin-film transistors together with micromechanical components, other active electrical components or both on an amorphous or polycrystalline substrate includes disposing the thin-film transistors and the other components on different areas of the substrate.
Abstract:
Methods for fabricating of high aspect ratio probes and deforming micropillars and nanopillars are described. Use of polymers in deforming nanopillars and micropillars is also described.
Abstract:
Disclosed herein are methods of immobilizing a particle which comprise focusing the flow of a sample fluid containing the particle into a virtual channel which flows towards an unoccupied hydrodynamic trap in a microfluidic channel such that the particle flows into the hydrodynamic trap and becomes immobilized therein. Also disclosed are microfluidic devices which comprise at least one microchannel having at least one hydrodynamic trap, at least one focusing fluid inlet, said focusing fluid inlet is upstream of the hydrodynamic trap such that a focusing fluid introduced therein results in a virtual channel of a sample fluid when present which preferentially flows toward the hydrodynamic trap.