Abstract:
The present invention discloses a method for measuring absolute value of non-linear error and an apparatus thereof. The method comprises: placing N reflecting plates jointed together at the sample port of the optical measuring instrument at the same time, wherein each of reflecting plate has a same covering area at the sample port; placing an aperture along light paths of the optical measuring instrument; adjusting the number of reflecting plates as used according to a position in the measuring range of the optical measuring instrument where the non-linear error is required to be measured; following every adjustment, acquiring the output results when the adjusted reflecting plates are placed at the sample port; performing a computation processing for non-linear error to the output results; and acquiring the non-linear error of the output results of the optical measuring instrument.
Abstract:
Systems in a flow cytometer having an interrogation zone and illumination impinging the interrogation zone include: a lens subsystem including a collimating element that collimates light from the interrogation zone, a light dispersion element that disperses collimated light into a light spectrum, and a focusing lens that focuses the light spectrum onto an array of adjacent detection points; a detector array, including semiconductor detector devices, that collectively detects a full spectral range of input light signals, in which each detector device detects a subset spectral range of the full spectral range of light signals; and a user interface that enables a user to create a set of virtual detector channels by grouping detectors in the detector array, such that each virtual detector channel corresponds to a detector group and has a virtual detector channel range including the sum of subset spectral ranges of the detectors in the corresponding detector group.
Abstract:
An imaging apparatus according to an aspect of the present disclosure includes a first coding element that includes regions arrayed two-dimensionally in an optical path of light incident from an object, and an image sensor. Each of the regions includes first and second regions. A wavelength distribution of an optical transmittance of the first region has a maximum in each of first and second wavelength bands, and a wavelength distribution of an optical transmittance of the second region has a maximum in each of third and fourth wavelength bands. At least one selected from the group of the first and second wavelength bands differs from the third and fourth wavelength bands. The image sensor acquires an image in which components of the first, second, third and fourth wavelength bands of the light that has passed through the first coding element are superimposed on one another.
Abstract:
Apparatus and method to measure optical absorption spectra with spatial resolution on the micron scale. An exemplary setup combines a continuous white light excitation beam in transmission geometry with a confocal microscope. Spatial resolution better than 1.4 μm in the lateral and 3.6 μm in the axial, directions was obtained. The detection and measurement of the absorption spectrum of hemoglobin in a single red blood cell under physiological conditions on the timescale of seconds was realized. The apparatus and method enables the investigation of spatial variations in the optical density of small samples on the micron scale and the study of biological assemblies at the single cell level, leading to applications in optical diagnostics, microfluidics, and other areas.
Abstract:
[Object] To provide an optical device for use with coherent terahertz light, which enables to reduce and remove an unwanted interference pattern, and to acquire a terahertz image of high image quality.[Solving Means] The optical device for use with coherent terahertz light includes an optical system (2) that uses coherent terahertz light beam (1) whose frequency(ies) is/are within a range from 0.1 to 10 THz. A structure(s) (4) being located outside of effective diameter (3) of the beam (1) and including anti-reflection material (5) on an area(s) of the structure, the area(s) is/are facing to the beam (1).
Abstract:
Methods and systems are provided, which pattern an illumination of a metrology target with respect to spectral ranges and/or polarizations, illuminate a metrology target by the patterned illumination, and measure radiation scattered from the target by directing, at a pupil plane, selected pupil plane pixels from a to respective single detector(s) by applying a collection pattern to the pupil plane pixels. Single detector measurements (compressive sensing) has increased light sensitivity which is utilized to pattern the illumination and further enhance the information content of detected scattered radiation with respect to predefined metrology parameters.
Abstract:
A detecting system for detecting an under-test light of an under-test object includes a light spatial distribution unit, a chromatic-dispersion light-splitting unit and a detecting unit. The light spatial distribution unit is disposed on a side of the under-test object to receive the under-test light and form a plurality of point light sources. The chromatic-dispersion light-splitting unit is disposed on a side of the light spatial distribution unit to receive the point light sources and produce a light-splitting signal. The detecting unit is disposed on a side of the chromatic-dispersion light-splitting unit to receive the light-splitting signal and produce an optical field distribution of the under-test light.
Abstract:
Described are a method and apparatus for high-speed phase shifting of an optical beam. A transparent plate having regions of different optical thickness is illuminated by an optical beam along a path of incidence that extends through the regions. The transparent plate can be moved or the optical beam can be steered to generate the path of incidence. The optical beam exiting the transparent plate has an instantaneous phase value according to the region in which the optical beam is incident. Advantageously, the phase values are repeatable and stable regardless of the location of incidence of the optical beam within the respective regions, and phase changes at high modulation rates are possible. The method and apparatus can be used to modulate a phase difference of a pair of coherent optical beams such as in an interferometric fringe projection system.
Abstract:
A hyperspectral imaging system having an optical path. The system including an illumination source adapted to output a light beam, the light beam illuminating a target, a dispersing element arranged in the optical path and adapted to separate the light beam into a plurality of wavelengths, a digital micromirror array adapted to tune the plurality of wavelengths into a spectrum, an optical device having a detector and adapted to collect the spectrum reflected from the target and arranged in the optical path and a processor operatively connected to and adapted to control at least one of: the illumination source; the dispersing element; the digital micromirror array; the optical device; and, the detector, the processor further adapted to output a hyperspectral image of the target. The dispersing element is arranged between the illumination source and the digital micromirror array, the digital micromirror array is arranged to transmit the spectrum to the target and the optical device is arranged in the optical path after the target.
Abstract:
Multispectral images, including ultraviolet light and its interactions with ultraviolet light-interactive compounds, can be captured, processed, and represented to a user. Ultraviolet-light related information can be conveniently provided to a user to allow the user to have awareness of UV characteristics and the user's risk to UV exposure.