Abstract:
A mobile computing device that includes an image sensor may be used to detect the result of a biomolecular assay. The biomolecular assay may be performed in an optical assay medium that provides an optical output in response to light from a light source, with the optical output indicating result. A wavelength-dispersive element may be used to disperse the optical output into spatially-separated wavelength components. The mobile computing device may be positioned relative to the wavelength-dispersive element such that different wavelength components are received at different locations on the image sensor. With the mobile computing device positioned in this way, the image sensor may be used to obtain one or more images that include the separated wavelength components of the optical output. A wavelength spectrum of the optical output may be determined from the one or more images, and the result may be determined from the wavelength spectrum.
Abstract:
A hand-held instrument includes a sample probe for evaluating at least one constituent of a sample; a processor configured with machine executable code stored on machine readable media for controlling the instrument; a display for providing output of the instrument; and, a pointing device for selecting output of the display and providing input to the processor, the pointing device configured for facilitating the selecting while holding the instrument. A method of use, a computer program product and embodiments of sample analyzers are disclosed.
Abstract:
The method is for identifying and selecting a color or a combination of colors. A color sphere (200) is provided that has a first color pocket (238) defined between a first horizontal disc (202) and a second horizontal disc (208) and vertical inserts (212c, 212b) extending between the first horizontal disc and the second horizontal disc. The first horizontal disc has a plurality of organized first spectrum of color cells and the second horizontal disc has a plurality of organized second spectrum of color cells. The first spectrum is gradually lighter than the second spectrum and gradually more gray from a peripheral surface (209) towards an axial opening (232a) of the first horizontal disc and an axial opening (232b) of the second horizontal discs. A first color cell (236) is identified in a first pocket (238).
Abstract:
A spectrometry device includes a wavelength-tunable interference filter that is provided with a stationary reflection film, a movable reflection film and an electrostatic actuator which changes a gap dimension between the stationary reflection film and the movable reflection film; a detector that receives incident light; a filter control unit that sets the gap dimension between the stationary reflection film and the movable reflection film to be a first dimension corresponding to light having a first wavelength which is smaller than that of a measurement target wavelength region; a cutoff filter that cuts off the light having a wavelength which is smaller than that of the measurement target wavelength region; and a light quantity acquisition unit that acquires the light quantity of stray light received by the detector when the gap dimension is changed to be the first dimension.
Abstract:
A method is provided for using a single-pixel imager in order to spatially reconstruct an image of a scene. The method can comprise the following: configuring a light filtering device including an array of imaging elements to a spatially varying optical filtering process of incoming light according to a series of spatial patterns corresponding to sampling functions. The light filtering device can be a transmissive filter including a first membrane, a second membrane, and a variable gap therebetween. The method further comprises tuning a controller for manipulating a variable dimension of the gap; and, measuring, using a photodetector of the single-pixel imager, a magnitude of an intensity of the filtered light across pixel locations in the series of spatial patterns. The magnitude of the intensity can be equivalent to an integral value of the scene across the pixel locations.
Abstract:
Disclosed is a portable handheld characteristic analyzer used to analyze chemical compositions in or near real-time. The analyzer may include a portable housing, at least one optical computing device arranged within the portable housing for monitoring a sample, the at least one optical computing device having at least one integrated computational element configured to optically interact with the sample and thereby generate optically interacted light, at least one detector arranged to receive the optically interacted light and generate an output signal corresponding to a characteristic of the sample, and a signal processor communicably coupled to the at least one detector for receiving the output signal, the signal processor being configured to determine the characteristic of the sample and provide a resulting output signal indicative of the characteristic of the sample.
Abstract:
Disclosed is a multi-channel light measurement system adapted to illuminate and measure a test sample in a vessel. The multi-channel light measurement system has at least one photodetector per channel and a variable integrate and hold circuit coupled to each photodetector, the variable integrate and hold circuit allows adjustment of a sampling factor selected from a group of an integration time, a value of capacitance, an area of a discrete photodetector array, or any combination thereof. The system may readily equilibrate reference intensity output for multiple channels. Methods and apparatus are disclosed, as are other aspects.
Abstract:
Disclosed are apparatus, kits, methods, and systems that include a radiation source configured to direct radiation to a sample; a detector configured to measure radiation from the sample; an electronic processor configured to determine information about the sample based on the measured radiation; a housing enclosing the source, the detector, and the electronic processor, the housing having a hand-held form factor; an arm configured to maintain a separation between the sample and the housing, the arm including a first end configured to connect to the housing and a second end configured to contact the sample; and a layer positioned on the second end of the arm, the layer being configured to contact the sample and to transmit at least a portion of the radiation from the sample to the detector.
Abstract:
A non-contact type dental shade matching device is provided, comprising a camera body for capturing image of one or more target teeth; an opaque intra-oral compartment snugly adapted for a human mouth; an opaque cover shield body connected between the camera body and the intra-oral compartment; one or more holders for holding one or more shade tabs; and a color matching module being operably connected to the camera body to receive the captured images containing color and translucency information of the target tooth and/or shade tab information, and then to process the images based on a content-based algorithm for automatic shade matching between the target tooth and the shade tabs for each of the captured images, so as to achieve an optimal dental prosthesis.
Abstract:
A wavelength variable interference filter includes a first drive electrode electrically connected to a first reflective film and a second drive electrode electrically connected to a second reflective film. The thickness of the first drive electrode is greater than the thickness of the first reflective film, and the thickness of the second drive electrode is greater than the thickness of the second reflective film. The first drive electrode has a first step portion having a thickness smaller than the thickness of the first reflective film in an end portion connected to the first reflective film, and the second drive electrode has a second step portion having a thickness smaller than the thickness of the second reflective film in an end portion connected to the second reflective film.