Abstract:
coating film having excellent adhesion, even without the presence of a chemical conversion film treatment out as an undercoat and a metal automotive part having the coating film. A powder is deposited by powder-coating onto the surface of a metal automotive part that has been quenched after simultaneously forging, and tempering the metal automotive part and bake-hardening the deposited powder to form a skin film on the surface of the metal automotive part. The surface of the metal automotive part before the powder is powder-coated thereon is a work-hardened material surface that has been not been subjected to a chemical conversion filming treatment.
Abstract:
The present invention provides methods for preparing or repairing a chemically-resistant coating such as a porcelain enamel on a metal substrate. One such method involves forming a ground coat on the substrate, cooling the substrate to substantially near ambient temperature, optionally by applying a heat source to cool the substrate slowly, followed by flame-spray depositing a coating material onto the softened ground coat. Then, the substrate is allowed to cool slowly so the chemically-resistant coating can form with less stress. Optionally, an induction coil is used to heat the substrate, both to form the ground coat and to slow the cooling of the substrate. Such methods allow for easier and faster repairs, and even in situ repairs of articles such as chemical reactor vessels, covers, baffles, thermowells, agitators, agitator shafts, pipes, heat exchangers, and storage tanks, as well as white goods such as ovens, stoves, washing machines, driers, in addition to bathtubs, sinks, and shower stalls, in addition to steel girders and steel reinforcing bars. Articles having a chemically-resistant coating also form a part of the invention.
Abstract:
An induction heater includes an electrically conductive coil that produces an alternating magnetic field when current is applied to the coil. The magnetic field is used to heat metal containers such as tubular containers. The coil extends about a heating path of travel that extends along the longitudinal axis of the coil. A transport device is provided to move the container through the magnetic field such that the longitudinal axis of the container is generally perpendicular to the longitudinal axis of the coil. This allows for heating the container at the twelve and six o'clock positions. The transport device functions to roll the container along the heating path. In a preferred embodiment, the coil is wrapped about a core with a generally rectangular shape. Ferromagnetic members may optionally be used to further shape the magnetic field. The methods and apparatus may be used for regular or irregularly shaped containers.
Abstract:
The invention relates to an apparatus and method for coating a pipe or a section of a pipe with a polymer layer. The apparatus comprises an applicator for applying polymer melt on the surface of a pipe or pipe section, a roller for pressing the polymer applied by the applicator towards the pipe or pipe section, and means for circumferentially moving the applicator and the roller around the periphery of the pipe or pipe section. According to the invention the apparatus further comprises a drive for rotating the roller as the roller is moving around the periphery of a pipe or pipe section. By means of the invention, higher quality coatings can be applied to field joints of steel pipes, for example.
Abstract:
The invention provides a coating film having excellent adhesion, even without a chemical conversion film treatment being carried out as an undercoat treatment, and a metal automotive part having the coating film. A powder is deposited by powder-coating onto the surface of a metal automotive part that has been quenched after forging, and tempering of the metal automotive part and bake-hardening of the deposited powder are carried out simultaneously, thereby forming a skin film on the surface of the metal automotive part. The surface of the metal automotive part before the powder is powder-coated thereon is a work-hardened basis material surface that has been not subjected to a chemical conversion filming treatment.
Abstract:
A tool useful in the manufacture of a semiconductor is disclosed. A mold is providing having an interior defining a planar capillary space. A coating substantially covers at least the planar capillary space of the graphite member. The coating is substantially non-reactive to silicon at temperatures greater than approximately 1420 degrees Centigrade.
Abstract:
One embodiment of the present invention provides a polyamide powder, which includes polyamide particles having a median grain size d 50 of from 20 to 90 μm, a content of fines
Abstract:
To provide paint films which have excellent heat-radiating properties and with which many colors with light colors in the main can be obtained. (Means of Resolution). A paint film which has excellent heat-radiating properties which comprises an undercoat paint film layer which contains from 1 to 20 mass % with respect to the total solid fraction of the paint film of carbon black and a top-coat paint film layer which contains 1 to 40 mass % with respect to the total solid fraction of the paint film of a pearl pigment and which does not contain aluminum powder and the paint film thickness of the top-coat paint film layer is from 11 to 50 μm which can be formed with a method of forming paint films which have excellent heat-radiating properties wherein an undercoat paint which contains from 1 to 20 mass % with respect to the total solid fraction of the paint film of carbon black is applied and hardened and an undercoat paint film layer is formed and then a top-coat paint which contains 1 to 40 mass % with respect to the total solid fraction of the paint film of a pearl pigment and which does not contain aluminum powder is applied over said undercoat paint film layer and hardened and a top-coat paint film layer of which the paint film thickness is from 11 to 50 μm is formed.
Abstract:
A reinforcing underlayment including dry uniform particles evenly applied to a wet bonding material layer on a surface of a substrate. The substrate, including the layers, is then cured to harden the one or more of the layers. A final coating or topcoat is applied to the cured surface of the substrate. The dry particles are evenly distributed onto the bonding material layer creating a uniform surface for subsequent coatings. The dry particles increase the strength of the liquid coatings increasing solid particle density within the coating system and thereby imparting properties not available for the liquid coatings. The present invention enables a user to easily introduce very heavy, dense, strong particles into a liquid coating and allows the user to apply very dense, heavy particles into and onto a wet bonding material layer followed by a subsequent wet topcoat layer which is cured as one contiguous material with reinforcement and underlayment strengthening coming from the added, dry particles.
Abstract:
A high frequency induction-heating device 3 of the apparatus 1 for heating work includes a pair of opposite work coils accommodated within the coil casings 17 and 19 respectively. The casings 17 and 19 can be displaced in a unit by a motor provided under the device. Thus, the distance between the pair of work coils, and the distance between the work (W) and each work coil can be adjusted. The apparatus includes a plurality of heating devices 3 to which high frequency power sources are provided respectively. The apparatus and method for heating of a work with the apparatus is capable of treating a plurality of works (W) continuously under controlled conditions on work coil shapes and positions depending on the size and/or the shape of the works (W).