Abstract:
A silicon processing method includes: forming a mask pattern on a principal plane of a single-crystal silicon substrate; and applying crystal anisotropic etching to the principal surface to form a structure including a (111) surface and a crystal surface equivalent thereto and having width W1 and length L1. The principal plane includes a (100) surface and a crystal surface equivalent thereto or a (110) surface and a crystal surface equivalent thereto. A determining section for determining the width W1 of the structure is formed in the mask pattern. The width of the determining section for the width W1 of the mask pattern is width W2. The width of the mask pattern other than the determining section is larger than the width W2 over a length direction of the mask pattern.
Abstract:
Methods for fabricating sublithographic, nanoscale microstructures utilizing self-assembling block copolymers, and films and devices formed from these methods are provided.
Abstract:
A shadow mask, a method of manufacturing the shadow mask, and a method of forming a thin film using the shadow mask are provided. The shadow mask includes an upper layer and a lower layer. The upper layer includes a first opening. The lower layer is formed on a lower surface of the upper layer around the first opening and includes an opening having the same size as the first opening. When the thin film is formed using the shadow mask, the lower layer of the shadow mask is close to the edge of a cavity of a substrate, and a position on which the thin film may be formed as defined by the lower layer of the shadow mask. Therefore, the thickness of the thin film can be uniform.
Abstract:
An optical device includes a support portion, a movable portion; and a pair of torsion bars. An optical function portion is provided on one surface of the movable portion and a rib portion is provided on the other surface of the movable portion. The rib portion includes eight extending portions of first to eighth extending portions. When setting directions in which the first to eighth extending portions extend as first to eighth extending directions respectively, and setting an angle between the first and second extending directions as a first angle, an angle between the third and fourth extending directions as a second angle, an angle between the fifth and sixth extending directions as a third angle, and an angle between the seventh and eighth extending directions as a fourth angle, each of the first and second angle is larger than each of the third and fourth angle.
Abstract:
A method producing a microelectromechanical component. A dielectric layer is structured on an upper side of a substrate forming a grating, and a blind hole is formed beneath the grating. A cover layer is arranged on the dielectric layer closing the blind hole. A layer sequence is arranged on the cover layer and above the blind hole. Functional structures are formed in the layer sequence and an access channel extending through the layer sequence to the blind hole is formed. A further substrate is connected to the substrate. The functional structures are enclosed in a cavity, connected to the blind hole, between the substrate and the further substrate. Another blind hole is formed on an underside of the substrate. The blind hole is opened in the region of the other blind hole. A cavity internal pressure is set, and the blind hole is closed.
Abstract:
A method for producing a bonding pad for a micromechanical sensor element. The method includes: depositing a first metal layer onto a top face of the functional layer, and depositing a second metal layer onto the first metal layer, wherein only the first layer or only the second layer is formed in a border region extending around a bonding pad region; covering a protective layer over a top face of the second metal layer in the bonding pad region and over the first or second metal layer in an inner peripheral portion of the border region, which inner peripheral portion adjoins the bonding pad region; etching the first or second layer at least in an outer peripheral portion of the border region down to the top face of the functional layer; removing the protective layer; carrying out an etching process starting from the top face of the layered structure.
Abstract:
After forming spacers over a hard mask layer using a sidewall image transfer process, a neutral material layer is formed on the portions of the hard mask layer that are not covered by the spacers. The spacers and the neutral material layer guide the self-assembly of a block copolymer material. The microphase separation of the block copolymer material provides a lamella structure of alternating domains of the block copolymer material.
Abstract:
In one embodiment of the present invention, an electronic device includes a first emitter/collector region and a second emitter/collector region disposed in a substrate. The first emitter/collector region has a first edge/tip, and the second emitter/collector region has a second edge/tip. A gap separates the first edge/tip from the second edge/tip. The first emitter/collector region, the second emitter/collector region, and the gap form a field emission device.
Abstract:
A hermetic package comprising a substrate (110) having a surface with a MEMS structure (101) of a first height (101a), the substrate hermetically sealed to a cap (120) forming a cavity over the MEMS structure; the cap attached to the substrate surface by a vertical stack (130) of metal layers adhering to the substrate surface and to the cap, the stack having a continuous outline surrounding the MEMS structure while spaced from the MEMS structure by a distance (140); the stack having a bottom first metal seed film (131a) adhering to the substrate and a bottom second metal seed film (131b) adhering to the bottom first seed film, both seed films of a first width (131c) and a common sidewall (138); further a top first metal seed film (132a) adhering to the cap and a top second metal seed film (132b) adhering to the top first seed film, both seed films with a second width (132c) smaller than the first width and a common sidewall (139); the bottom and top metal seed films tied to a metal layer (135) including gold-indium intermetallic compounds, layer (135) having a second height (133a) greater than the first height and encasing the seed films and common sidewalls.
Abstract:
A pattern-forming method in which processibility of a silicon-containing film in etching with a fluorine gas and resistance against etching with an oxygen gas can be together improved in a multilayer resist process to form a finer pattern. Provided is a pattern-forming method that includes the steps of (1) providing a silicon-containing film on the upper face side of a substrate to be processed using a polysiloxane composition; (2) forming a resist pattern on the silicon-containing film; (3) dry-etching the silicon-containing film using the resist pattern as a mask to form a silicon-containing pattern; and (4) dry-etching the substrate to be processed using the silicon-containing pattern as a mask to form a pattern, in which the polysiloxane composition includes (A) a polysiloxane containing a fluorine atom, and (B) a crosslinking accelerator.