Abstract:
The inventions relates to a method of manufacturing a flexible surface mounted device, the method including bonding a main face of a conductive layer to an insulating layer; linking electrically and mechanically at least one electronic surface mounted component to the conductive layer; wherein the insulating layer is punched to produce through holes through which the electronic component is linked to said main face of the conductive layer.
Abstract:
A suspension board with circuit includes a conductive pattern. The conductive pattern includes a first terminal provided on the front face of the suspension board with circuit and electrically connected with a magnetic head; and a second terminal provided on the back face of the suspension board with circuit and electrically connected with an electronic device.
Abstract:
An apparatus and method wherein the apparatus comprises includes a deformable substrate; a conductive portion; and at least one support configured to couple the conductive portion to the deformable substrate so that the conductive portion is spaced from the deformable substrate.
Abstract:
Disclosed is a double-side-conducting flexible-circuit flat cable with cluster section, which includes a flexible circuit substrate, a first electrical conduction path, a second electrical conduction path, a plurality of first and second conductive contact zones. The flexible circuit substrate has a first surface and a second surface and includes, in an extension direction, a first connection section, a cluster section, and at least one second connection section. The cluster section is composed of a plurality of clustered flat cable components formed by slitting in the extension direction. The first and second electrical conduction paths are respectively formed on the first and second surfaces of the flexible circuit substrate and each extends along one of the clustered flat cable components of the cluster section. The plurality of first and second conductive contact zones are respectively arranged on the first and second surfaces of the flexible circuit substrate at the first connection section. Each of the first and second conductive contact zones extends along one of the electrical conduction paths of the cluster section toward the second connection section.
Abstract:
A substrate includes an insulating film in which a penetrating hole is formed, the penetrating hole extending between a first surface of the insulating film and a second surface of the insulating film opposite to the first surface of the insulating film. A wiring pattern is adhered to the first surface of the insulating film by an adhesive material. A first portion of the wiring pattern is formed over the penetrating hole, and a part of the adhesive material is formed on an internal wall surface forming the penetrating hole so as not to stop up the penetrating hole. An external electrode contacts the first portion of the wiring pattern and projects through the penetrating hole and extends beyond the second surface of the insulating film.
Abstract:
A flexible printed wiring board includes a substrate, conductor wirings, a coverlay film, a jumper wiring, and through holes. The conductor wirings are disposed on a first surface of the substrate. The coverlay film covers at least part of the conductor wirings. The jumper wiring electrically connects the conductor wirings to each other. The through holes are formed in the substrate and respectively open to the surfaces of the conductor wirings. The jumper wiring is composed of a hardened material of a conductive paste and is formed so that a second surface of the substrate is continuous with respective surfaces of the conductor wirings to which the through holes open.
Abstract:
A flexible printed circuit includes: a first wiring layer and a second wiring layer being in contact with one surface of a flexible substrate, a third wiring layer and a fourth wiring layer on the other surface of the flexible substrate, a first conductive member being formed on surfaces in proximity to a through hole of the second wiring layer and the fourth wiring layer; a second conductive member being formed on surfaces in proximity to the first end section of the first wiring layer and the third wiring layer; and an insulating layer being formed in a space between the first wiring layer and the second conductive member, and the second wiring layer and the first conductive member and a space between the third wiring layer and the second conductive member, and the fourth wiring layer and the first conductive member.
Abstract:
A circuit device includes an insulating base provided with a resin layer mixed with a fibrous filler, bumps provided in the insulating base and functioning as electrodes for connection, a semiconductor device that is flip-chip mounted, and an underfill filling a gap between the semiconductor device and the insulating base. By allowing the fibrous filler projecting through the top surface of the resin layer to be in contact with the underfill, strength of adhesion between the underfill and the insulating base is improved.
Abstract:
In a method for manufacturing a foil-like electrical connector for connecting solar cells to form modules, an insulating carrier film sheet is initially provided in a width which essentially corresponds to the width of the solar cells to be connected. Furthermore, a conductive foil sheet having a width that is matched to the carrier film is provided. In addition, comb structures as subsequent electrical connection fingers are formed. The conductive foil sheet is positioned on the carrier film with the aid of pin-shaped extensions of a transport belt or a transport roller. The carrier film is subsequently joined to the conductive foil sheet, preferably via an adhesive bond. In the next step, an insulating cover film is applied, in particular laminated.
Abstract:
A method for manufacturing a printed wiring board, in which filled vias with a reduction in faulty connections are formed, and providing such a printed wiring board. After an electroless plated film is formed on an inner wall of a via opening, electrolytic plating is performed on insulative resin base material; the via opening is filled with plating metal and a filled via is formed. Therefore, during electrolytic plating, a plating metal is deposited from electroless plated film on the side wall of the via opening as well as from the bottom of the via opening. As a result, the via opening may be completely filled through electrolytic plating, forming a filled via with a reduction in faulty connections.