Abstract:
A method of manufacturing an electronic circuit with an integrally formed capability of providing information indicative of a value of a current flowing in the electronic circuit, wherein the method comprises forming an electrically conductive wiring structure on a substrate, configuring a first section of the wiring structure for contributing to a predefined use function of the electronic circuit, and configuring a second section of the wiring structure for providing information indicative of the value of the current flowing in the electronic circuit upon applying a stimulus signal to the second section, wherein at least a part of the configuring of the first section and the configuring of the second section is performed simultaneously.
Abstract:
According to one embodiment, a light emitting module substrate includes: a base body that uses a ceramic; and a wiring pattern which is provided on a surface of the base body and in which a thickness in a region to be soldered is thicker than that in a region other than the region to be soldered.
Abstract:
A package substrate is provided, which includes a plurality of dielectric layers and a plurality of circuit layers alternately stacked with the dielectric layers. At least two of the circuit layers have a difference in thickness so as to prevent warpage of the substrate.
Abstract:
The electronic component of this invention includes a multilayer ceramic substrate 14 composed of a plurality of ceramic layers 12. A wiring electrode 16 and a planar electrode 18 are formed on a ceramic layer 12, which is an insulating layer. The planar electrode 18 is formed so as to be spaced apart from the wiring electrode 16 at the certain interval. An edge portion 22 is formed in a region of the planar electrode 18 adjacent to and spaced apart from the wiring electrode 16 at a certain interval. A central portion 20 is formed in a region of the planar electrode 18 other than the edge portion 22. At least the composition of the central portion 20 is different from the composition of the wiring electrode 16, and the composition of the edge portion 22 is the same as the composition of the wiring electrode 16.
Abstract:
A wiring board includes a first resin insulating layer, conductor pads on the first insulating layer including first and second conductor pads, a second resin insulating layer on the first insulating layer covering the first and second pads, an outermost conductor layer on the second insulating layer including first and second outermost wiring layers, via conductors through the second insulating layer including a first via conductor connecting the first wiring layer and first pad and a second via conductor connecting the second wiring layer and second pad, and a solder resist layer on the second insulating layer such that the solder resist layer is covering the first wiring layer and has one or more openings exposing the second wiring layer. The first wiring layer includes first main metal, and the second wiring layer includes second main metal which is different from the first metal of the first wiring layer.
Abstract:
A printed wiring board, including a printed wiring member which respectively has object conductor that is subjected to electromagnetic wave shielding on at least one surface of an insulating layer; and an electromagnetic wave shielding member which has an electromagnetic wave shielding layer composed of a low-resistance section and a high-resistance section on at least one surface of a base film. The printed wiring member and the electromagnetic wave shielding member are bonded together with interposition of insulating adhesive layers, and with arrangement of the electromagnetic wave shielding layer separately and in opposition so that the object conductor is covered. The electromagnetic wave shielding layer and the object conductor are composed of the same type of conductive material, and the electromagnetic wave shielding layer is not exposed at the circumferential end faces of the printed wiring board.
Abstract:
An ESD countermeasure device is provided with (i) discharge electrodes that are positioned between first and second insulating substrates and are opposite to each other with a gap therebetween; and (ii) a discharge inducing portion that is disposed at opposing portions of the discharge electrodes and between the opposing portions, wherein a cross-sectional area of each of the opposing portions of the discharge electrodes that are opposite to each other is larger than that of each of lead portions of the discharge electrodes that are opposite to each other.
Abstract:
A capacitor arrangement structure includes: a first wiring pattern; a second wiring pattern; a first electrode pattern that protrudes from the first wiring pattern toward the second wiring pattern; a second electrode pattern that protrudes from the second wiring pattern toward the first wiring pattern so as to run in parallel to the first electrode pattern; and a plurality of capacitors that are arranged in parallel between the first electrode pattern and the second electrode pattern.
Abstract:
A variable-depth micro-channel structure includes a substrate. A cured layer is formed on the substrate. A micro-channel embossed in the cured layer has a bottom surface defining two or more different micro-channel depths of the micro-channel. A cured electrical conductor forms a micro-wire in the micro-channel over the bottom surface of the micro-channel and extends across at least a portion of the bottom surface of the micro-channel.
Abstract:
Some embodiments described herein include apparatuses and methods of forming such apparatuses. One such embodiment may include a routing arrangement having pads to be coupled to a semiconductor die, with a first trace coupled to a first pad among the pads, and a second trace coupled to a second pad among the pads. The first and second traces may have different thicknesses. Other embodiments including additional apparatuses and methods are described.