Abstract:
An electronic device manufacturing system may include a chamber port assembly that provides an interface between a transfer chamber and a process chamber. In some embodiments, the chamber port assembly may be configured to direct a flow of purge gas into a substrate transfer area of the chamber port assembly. In other embodiments, a process chamber and/or the transfer chamber may be configured to direct a flow of purge gas into the substrate transfer area. The flow of purge gas into a substrate transfer area may prevent and/or reduce migration of particulate matter from chamber hardware onto a substrate being transferred between the transfer chamber and a process chamber. Methods of assembling a chamber port assembly are also provided, as are other aspects.
Abstract:
A plasma reactor has an overhead multiple coil inductive plasma source with symmetric RF feeds and a symmetrical chamber exhaust with plural struts through the exhaust region providing access to a confined workplace support. A grid may be included for masking spatial effects of the struts from the processing region.
Abstract:
Embodiments of process kits for use in a process chamber are provided herein. In some embodiments, a process kit for use in a process chamber includes: a chamber liner having a tubular body with an upper portion and a lower portion; a confinement plate coupled to the lower portion of the chamber liner and extending radially inward from the chamber liner, wherein the confinement plate includes a plurality of slots; a shield ring disposed within the chamber liner and movable between the upper portion of the chamber liner and the lower portion of the chamber liner; and a plurality of ground straps coupled to the shield ring at a first end of each ground strap of the plurality of ground straps and to the confinement plate at a second end of each ground strap to maintain electrical connection between the shield ring and the chamber liner when the shield ring moves.
Abstract:
An apparatus for processing a substrate is disclosed and includes, in one embodiment, a twin chamber housing having two openings formed therethrough, a first pump interface member coaxially aligned with one of the two openings formed in the twin chamber housing, and a second pump interface member coaxially aligned with another of the two openings formed in the twin chamber housing, wherein each of the pump interface members include three channels that are concentric with a centerline of the two openings.
Abstract:
Described is a process to clean up junction interfaces for fabricating semiconductor devices involving forming low-resistance electrical connections between vertically separated regions. An etch can be performed to remove silicon oxide on silicon surface at the bottom of a recessed feature. Described are methods and apparatus for etching up the bottom oxide of a hole or trench while minimizing the effects to the underlying epitaxial layer and to the dielectric layers on the field and the corners of metal gate structures. The method for etching features involves a reaction chamber equipped with a combination of capacitively coupled plasma and inductive coupled plasma. CHxFy gases and plasma are used to form protection layer, which enables the selectively etching of bottom silicon dioxide by NH3—NF3 plasma. Ideally, silicon oxide on EPI is removed to ensure low-resistance electric contact while the epitaxial layer and field/corner dielectric layers are—etched only minimally or not at all.
Abstract:
Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
Abstract:
Embodiments of process kit components for use in a substrate support, and substrate supports incorporating same, are provided herein. In some embodiments, the substrate support may include a body, a grounding shell formed of an electrically conductive material disposed about the body, a liner formed of an electrically conductive material disposed about the grounding shell, where the liner includes an upper lip that extends inwardly towards the body, a metal fastener disposed through the upper lip to couple the liner to the grounding shell, and a first insulator ring disposed atop the upper lip of the liner and covering the metal fastener.
Abstract:
An electronic device manufacturing system may include a loadlock. The loadlock may include a plurality of gas line heaters for providing a heated gas to the loadlock to heat a processed substrate therein. Heating a processed substrate may reduce corrosion in the loadlock and subsequent contamination of substrates therein. The loadlock may also include a plurality of embedded heaters in the loadlock housing to reduce moisture therein, further reducing corrosion and contamination. Methods of heating a substrate in a loadlock are also provided, as are other aspects.
Abstract:
Embodiments of the present invention a load lock chamber including two or more isolated chamber volumes, wherein one chamber volume is configured for processing a substrate and another chamber volume is configured to provide cooling to a substrate. One embodiment of the present invention provides a load lock chamber having at least two isolated chamber volumes formed in a chamber body assembly. The at least two isolated chamber volumes may be vertically stacked. A first chamber volume may be used to process a substrate disposed therein using reactive species. A second chamber volume may include a cooled substrate support.
Abstract:
Apparatus for controlling the thermal uniformity of a substrate can control the thermal uniformity of the substrate to be more uniform or to be non-uniform. In some embodiments, an apparatus for controlling the thermal uniformity of a substrate includes: a substrate support having a support surface to support a substrate thereon. A flow path is disposed within the substrate support to flow a heat transfer fluid beneath the support surface. The flow path comprises a first portion and a second portion, each portion having a substantially equivalent axial length. The first portion is spaced about 2 mm to about 10 mm from the second portion. The first portion provides a flow of heat transfer fluid in a direction opposite a flow of heat transfer fluid of the second portion.