Abstract:
Neutral to basic silicone resin abrasion resistant coating compositions can be adherently secured to cast acrylic plastic substrates without a primer if the substrate is provided with a wash coat of glacial acetic acid shortly before being coated with said silicone resin composition.
Abstract:
Polyolefin rubber is coated with an isocyanate-curing varnish whose binder is a mixture of (a) a saturated oligoester resin containing hydroxyl groups and having a molecular weight of 250-3,500 and whose alcohol component is at least difunctional and 20-100 mole percent of which is 1,4-bis(hydroxymethyl)cyclohexane; and (b) a di- or poly-functional isocyanate or mixture thereof, wherein the ratio of isocyanate groups of the isocyanate to the hydroxyl groups of the oligoester resins is about 0.75 : 1 to 1 : 1, by pre-treating the vulcanized rubber article with a strong oxidizing agent or by irradiation with ultraviolet light.
Abstract:
In a preferred embodiment, a polyvinyl chloride surface attached through an intermediate thermoplastic to a thermosetting resin, accomplished by a preferred process in which solvated acrylonitrile butadiene styrene copolymer in a methyl ethyl ketone solvent is sufficiently applied to a polyvinyl chloride surface to solvate the surface and to form a surface solution of the polyvinyl chloride and the acrylonitrile butadiene styrene copolymer, drying the surface solution, placing a substantially uncured liquid epoxy resin in contact with the dried surface solution and/or coating of the solvated acrylonitrile butadiene styrene, and curing sufficiently to form a bond between said copolymer and said epoxy resin. Preferably, the epoxy resin is carried on glass fibers, i.e., glass fibers impregnated with the resin, and preferably the polyvinyl chloride surface is cylindrical in shape, in the form of a pipe. Accordingly, a preferred product is a glass fiber-reinforced polyvinyl chloride pipe.
Abstract:
Disclosed herein are methods and compositions for preparing a surface comprising thermoplastic or thermoset material to receive a polysulfide or polythioether sealant or coating, the method comprising applying to the surface an activating composition consisting of a tetraalkoxide of a Group 4 metal, a complex of an alkoxide of a Group 4 metal, or a combination thereof.
Abstract:
This resin composite laminate includes a urethane resin layer containing a urethane resin which has a urethane bond and a siloxane bond, has a weight average molecular weight of 52,200 to 260,000, and is soluble in a solvent, and a polyimide resin layer containing a polyimide resin having an imide bond, and a peel strength between the urethane resin layer and the polyimide resin layer is 1.6 N or more per 10 mm in width.
Abstract:
Provided is a preparation method for a double-layer working medium target tape with a plasma-enhanced interfacial bonding force for a micro laser thruster. Aiming at the problem that in an existing micro laser thruster, when a working medium is ablated by a laser beam, due to a weak interlayer interfacial bonding force between a transparent film substrate and the coating working medium, sputtering or bulging occurs, which remarkably reduces propulsive performance, a method for treating a surface of a transparent film substrate with a low-temperature plasma is used to increase surface energy of a film and an adhesive force of a working medium layer on a surface of the film, thereby enhancing the interlayer interfacial bonding force. According to the method in the present disclosure, the transparent film substrate is treated with the low-temperature plasma.
Abstract:
A method is used to provide an electrically-conductive polyaniline pattern by providing a uniform layer of a photocurable composition on a substrate. The photocurable composition comprises a water-soluble reactive polymer comprising (a) greater than 40 mol % of recurring units comprising sulfonic acid or sulfonate groups, and (b) at least 5 mol % of recurring units comprising a pendant group capable of crosslinking via [2+2] photocycloaddition. The photocurable composition is exposed to cause crosslinking via [2+2] photocycloaddition of the (b) recurring units, thereby forming a crosslinked polymer. Any remaining water-soluble reactive polymer is removed. The crosslinked polymer is contacted with an aniline reactive composition having aniline monomer and up to 0.5 molar of an aniline oxidizing agent, thereby forming an electrically-conductive polyaniline disposed either within, on top of, or both within and on top of, the crosslinked polymer.
Abstract:
Compositions of matter described as urea (multi)-urethane (meth)acrylate-silanes having the general formula RA—NH—C(O)—N(R4)—R11—[O—C(O)NH—RS]n, or RS—NH—C(O)—N(R4)—R11—[O—C(O)NH—RA]n. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi)-urethane (meth)acrylate-silane precursor compound. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making such urea (multi)-urethane (meth)acrylate-silane precursor compounds, and their use in composite films and electronic devices are also described. Methods of using multilayer composite films as barrier films in articles selected from solid state lighting devices, display devices, and photovoltaic devices are also described.
Abstract:
A rubber substrate has a material diffusion barrier, and a method produces the same. In an embodiment, a method for producing a material diffusion barrier on a rubber substrate include exposing the rubber substrate to a cationic solution to produce a cationic layer on the rubber substrate. The method also includes exposing the cationic layer to an anionic solution 5 to produce an anionic layer on the cationic layer. The anionic layer comprises graphene oxide. The layer includes the cationic layer and the anionic layer. The layer comprises the material diffusion barrier.