Abstract:
The application provides a product with a protective coating and a manufacturing method thereof. Prepare a first precursor dispersion comprising a first active organic precursor, and the first active organic precursor is a fluorine-free monomer. Prepare a second precursor dispersion comprising a second active organic precursor, and the second active organic precursor is a fluorine-containing monomer. Apply the first precursor dispersion to a product body, and dry the applied first precursor dispersion to form a first dried layer. Apply the second precursor dispersion to the first dried layer to cover the first dried layer, and dry the applied second precursor dispersion to form a second dried layer, so that the first active organic precursor and the second active organic precursor are polymerized to obtain a product with a protective coating.
Abstract:
A slurry for electrostatic spray deposition and method for forming a coating film using the same are provided. The slurry comprises a solvent, a first polymer dissolved in the solvent, and polymer particles containing a second polymer and dispersed in the solvent.
Abstract:
The present invention relates to a process for the preparation of thin silver nano-particles containing layers, which are produced directly on a substrate as part of a coating or printing process. The layers can show different colours in transmittance and reflectance. The invention further relates to decorative and security elements. When the layers are applied over a security element, such as a hologram, the obtained products may show different colours in reflection and transmission, an extremely bright optically variable image (OVD image). Depending on the thickness of the layer a more or less intensive metallic aspect appears.
Abstract:
The present invention relates to a method for producing a coating consisting of a cured surfacer coat and topcoat on a substrate, and also to a substrate coated by the method of the invention. The substrate preferably comprises the body or the cabin of a motor vehicle, or a constituent thereof. The method of the invention is suitable especially for producing coatings on automobiles and commercial vehicles, such as trucks, vans, or buses.
Abstract:
Shelf-stable low temperature cure coating compositions that include a hydroxy-functional resin, a crosslinking agent, and a catalyst that does not catalyze the crosslinking reaction between hydroxy-functional resin and the crosslinking agent contained therein, but instead between a hydroxy-functional resin and a crosslinking agent contained in a different low temperature cure coating composition. In addition, low temperature cure composite coatings that include: a waterborne basecoat containing a first hydroxy-functional resin, a first crosslinking agent, a first catalyst, and an organic solvent; and a solventborne topcoat containing a second hydroxy-functional resin, a second crosslinking agent, a second catalyst, and water, where the first catalyst migrates into the topcoat from the basecoat and catalyzes the reaction between the second hydroxy-functional resin and crosslinking agent, and the second catalyst migrates into the basecoat from the topcoat and catalyzes the reaction between the first hydroxy-functional resin and crosslinking agent.
Abstract:
To provide a laminate having characteristics of a fluorinated polymer film such as weather resistance and stain resistance, and having an increased solar reflectance by a light reflection layer, wherein the solar reflectance is less likely to decrease over a long period of time, and the light reflection layer is less likely to delaminate; and a production process thereof.A laminate 1 comprising a substrate 10 containing a first fluorinated polymer, a light reflection layer 12 made of a non-curable resin composition containing a second fluorinated polymer and an aluminum pigment, and a protective layer 14 obtained by curing a curable resin composition containing a third fluorinated polymer having a crosslinkable group and a curing agent for curing the third fluorinated polymer, wherein the light reflection layer 12 is disposed between the substrate 10 and the protective layer 14, the light reflection layer 12 has a thickness of from 0.5 to 5 μm, and the protective layer 14 has a thickness of from 0.3 to 2 μm.
Abstract:
There is provided an electro-conductive belt fabrication method having a drying step of forming a dry film, which includes applying a conductive-particle dispersion to the inside face of a circular tube, rotating the tube about its axis and forming a dispersion layer at a surface of the tube, and drying the dispersion layer until an amount of solvent in the dispersion layer reaches a predetermined residual amount; a resin material leaching step, which includes applying a liquid containing the dissolved or swollen resin material to a surface of the dry film, and leaching the resin material to a predetermined depth in the surface of the dry film; and a heating step that includes one of heating the resultant dry film and drying the dry film, and changing the precursor in the dry film to the predetermined resin material.
Abstract:
A method for producing a porous thin film with variable transmittance, includes placing a polymer into an oven for an drying process to remove water vapor from the polymer and obtain a dry polymer; mixing the dry polymer, a salt and a solvent in accordance with a mixing ratio so as to obtain a first mixed solution; placing the first mixed solution into an ultrasonic vibrator, dissolving the salt to form a second mixed solution; coating the second mixed solution on a glass plate to form a solution thin film; placing solution thin film into an exhaust cabinet to obtain a composite thin film; and washing the composite thin film to remove the salt from the composite thin film to obtain a porous thin film wherein the polymer is a polyacrylonitrile, the salt is a lithium chloride, the porous thin film changes its transmittance via dry and wet state.
Abstract:
A precursor sol of aluminum oxide contains a polycondensate formed by the hydrolysis of an aluminum alkoxide or an aluminum salt, a solvent, and an organic aluminum compound of general formula (1): wherein R1 and R2 each represent an alkyl group having 1 to 6 carbon atoms, a perfluoroalkyl group, or an allyl group; R3 represents an alkyl group having 1 to 6 carbon atoms, a perfluoroalkyl group, an allyl group, or an aryl group; and n represents an integer of 1 to 3. An optical member is produced by a process including a step of immersing an aluminum oxide film in a hot water with a temperature of 60 ° C. to 100 °C. to form a textured structure made of aluminum oxide crystals, the aluminum oxide film being formed by feeding the precursor sol of aluminum oxide onto a base. A method for producing an optical member includes a step of immersing an aluminum oxide film in a hot water with a temperature of 60 ° C. to 100 ° C. to form a textured structure made of aluminum oxide crystals, the aluminum oxide film being formed by feeding the precursor sol of aluminum oxide onto a base.
Abstract:
A coated sheet-like plastics material comprising a) as base, a thermoplastic substrate; and b) on the base, a photocatalytically active coating comprising a water-spreading layer which involves either a sol-adhesion-promoter layer, layer b1+2), comprising an adhesion promoter and a colloid sol, or a colloid-sol layer b2) arranged on an adhesion-promoter layer b1) applied on the substrate a), and a photocatalytically active layer b3) arranged on the water-spreading layer b1+2) or b2), where b3) is obtainable through application and drying of a mixture comprising, based on the solids content of the mixture in percent by weight b31) from 1 to 25% of titanium dioxide and b32) from 75 to 99% of silicon dioxide and/or of a metal oxide which is not soluble in water or of an anionically modified silicon dioxide or metal oxide; where the titanium dioxide is particulate with an average primary-particle size smaller than 10 nm. In-line process for producing said material, and also use as roofing material or as glazing material, preferably in areas with moist conditions. The coated sheet-like plastics material of the invention combines water-spreading properties with photocatalytic activity, without any damage to the thermoplastic substrates. The coated sheet-like plastics substrate of the invention is produced in a relatively uncomplicated, inexpensive and fast in-line process and, in use, provides impressive substrate stability and impressive effectiveness of the coating in resisting initial algal growth.