Abstract:
In the color imaging system, multiple rendering devices are provided at different nodes along a network. Each rendering device has a color measurement instrument for calibrating the color presented by the rendering device. A rendering device may represent a color display in which a member surrounds the outer periphery of the screen of the display and a color measuring instrument is coupled to the first member. The color measuring instrument includes a sensor spaced from the screen at an angle with respect to the screen for receiving light from an area of the screen. A rendering device may be a printer in which the measuring of color samples on a sheet rendered by the printer is provided by a sensor coupled to a transport mechanism which moves the sensor and sheet relative to each other, where the sensor provides light from the sample to a spectrograph. The color measuring instruments provide for non-contact measurements of color samples either displayed on a color display, or printed on a sheet, and are self-calibrating by the use of calibration references in the instrument.
Abstract:
A method of compensating for frequency drift of a reference energy source in an FT interferometer based spectrometer instrument, the method further comprising comparing in an arithmetic unit data representing a reference interferogram and data representing a target interferogram to determining a phase shift between the interferograms in a window W in at least one region away from center-burst and generating in the arithmetic unit a mathematical transform dependent on the determined shift or shifts to be subsequently applied to control the operation of the spectrometer instrument in order to generate data representing a frequency stabilized interferogram of an unknown sample recorded by the FT interferometer.
Abstract:
An apparatus and method for laser probing of a DUT is disclosed. The system enables laser voltage imaging state mapping of devices within the DUT. A selected area of the DUT is illuminating a while the DUT is receiving test signals causing certain of the active devices to modulate. Light reflected from the DUT is collected and is converted into an electrical signal. Phase information is extracting from the electrical signal and a two-dimensional image is generated from the phase information, wherein the two-dimensional image spatially correlates to the selected area.
Abstract:
In the color imaging system, multiple rendering devices are provided at different nodes along a network. Each rendering device has a color measurement instrument for calibrating the color presented by the rendering device. A rendering device may represent a color display in which a member surrounds the outer periphery of the screen of the display and a color measuring instrument is coupled to the first member. The color measuring instrument includes a sensor spaced from the screen at an angle with respect to the screen for receiving light from an area of the screen. A rendering device may be a printer in which the measuring of color samples on a sheet rendered by the printer is provided by a sensor coupled to a transport mechanism which moves the sensor and sheet relative to each other, where the sensor provides light from the sample to a spectrograph. The color measuring instruments provide for non-contact measurements of color samples either displayed on a color display, or printed on a sheet, and are self-calibrating by the use of calibration references in the instrument.
Abstract:
In the color imaging system, multiple rendering devices are provided at different nodes along a network. Each rendering device has a color measurement instrument for calibrating the color presented by the rendering device. A rendering device may represent a color display in which a member surrounds the outer periphery of the screen of the display and a color measuring instrument is coupled to the first member. The color measuring instrument includes a sensor spaced from the screen at an angle with respect to the screen for receiving light from an area of the screen. A rendering device may be a printer in which the measuring of color samples on a sheet rendered by the printer is provided by a sensor coupled to a transport mechanism which moves the sensor and sheet relative to each other, where the sensor provides light from the sample to a spectrograph. The color measuring instruments provide for non-contact measurements of color samples either displayed on a color display, or printed on a sheet, and are self-calibrating by the use of calibration references in the instrument.
Abstract:
An analysis system for directly analyzing solid samples by atomic emission spectroscopy wherein the system includes an atomic spectral lamp (1) of the type which enables a solid sample to be analyzed to be demountably located as a cathode of the lamp (1), means (2) for producing a primary electric discharge by cathodic sputtering from the sample via connection (8) and a secondary boosted discharge for analytical emission via connection (9), spectral wave length analysis device (4) being arranged to receive and determine the intensity of spectral lines emitted by the lamp (1), and control means (3) for controlling the system, the current level of the sample cathode and the operation of the spectral wave length analysis device (4) being controlled on the basis of output from the photomultiplier tube (7) such that the intensity of the spectral lines is maximized and the relationship between spectral line intensity and concentration of the corresponding element in the sample is maintained in a region which is substantially linear.
Abstract:
In an optical instrument which provides an analog signal representing the intensity of the reflected light from a sample, the sample is irradiated with narrow band wavelength light with the wavelength being repeatedly swept through a range of values to produce a repeating analog signal. Sampling pulses are produced simultaneously with the repeating analog signal to determine a sampling interval. An analog-to-digital converter is connected to receive the analog signal and converts the analog signal to a binary value several times in response to each sampling pulse. The binary values produced in response to each sampling signal are averaged and fed to a digital computer. In the digital computer, the received values are again averaged with other values produced in response to the sampling pulse produced at the same point in the scan of the wavelength irradiating the sample.
Abstract:
A polarized Raman Spectrometric system for defining parameters of a polycrystalline material, the system comprises a polarized Raman Spectrometric apparatus, a computer-controlled sample stage for positioning a sample at different locations, and a computer comprising a processor and an associated memory. The polarized Raman Spectrometric apparatus generates signal(s) from either small sized spots at multiple locations on a sample or from an elongated line-shaped points on the sample, and the processor analyzes the signal(s) to define the parameters of said polycrystalline material.
Abstract:
An optical frequency sensor that includes (i) a heterodyne modulation and splitting unit that is configured to receive a first laser signal, modulate the first laser signal to provide a modulated laser signal and split the modulated laser signal to provide pre-processed optical signals; (ii) a self-coherent interferometer that includes (ii.1) a first optical processor that is configured to process the pre-processed optical signals to provide processed optical signals, and (ii.2) a detection unit that is configured to electro-optically mix the processed optical signals and photodetect an outcome of the mixing to provide detection signalsm and (iii) a signal processor configured to process the one or more digital signals to provide digital information about the first laser signal.
Abstract:
A polarized Raman Spectrometric system for defining parameters of a polycrystalline material, said system comprising: a polarized Raman Spectrometric apparatus, a computer-controlled sample stage for positioning a sample at different locations, and a computer comprising a processor and an associated memory.