Abstract:
An optical device includes a waveplate sandwiched between first and second polarizers and is arranged to receive light emanating from an object or object image that is in motion relative to the optical device. A detector array includes one or more detector elements and is optically coupled to receive light from the second polarizer. Each detector element of the detector array provides an electrical output signal that varies according to intensity of the light received from the second polarizer. The intensity of the light is a function of relative motion of the object or the object image and the optical device and contains spectral information about an object point of the object.
Abstract:
A portable spectroscopic device for acquiring single-frame spatial, spectral, and polarization information of an object. The device includes a modular dispersion element assembly that is coupled to a mobile computing device and disperses light into a plurality of different wavelengths. The mobile computing device includes a sensor and is configured to receive and analyze the plurality of wavelengths. The mobile computing device is also configured to perform automatic calibrations to determine the absolute wavelength axis and make stray-light corrections with minimal user intervention, thus making it amenable for untrained users not familiar with the state of the art. The mobile computing device is also configured to extend dynamic range.
Abstract:
A hyperspectral/multispectral imager comprising a housing is provided. At least one light source is attached to the housing. An objective lens, in an optical communication path comprising originating and terminating ends, is further attached to the housing and causes light to (i) be backscattered by the tissue of a subject at the originating end and then (ii) pass through the objective lens to a beam steering element at the terminating end of the communication path inside the housing. The beam steering element has a plurality of operating modes each of which causes the element to be in optical communication with a different optical detector in a plurality of optical detectors offset from the optical communication path. Each respective detector filter in a plurality of detector filters covers a corresponding optical detector in the plurality of optical detectors thereby filtering light received by the corresponding detector from the beam steering element.
Abstract:
Technologies are generally described for fabrication of a multi-component device, and employment thereof. The device may include a substrate, and a multitude of light sources and one or more photo detectors positioned on a surface of the substrate. The light sources may be configured to illuminate at least a portion of an object with light, and the photo detectors may be configured to detect reflected light from the object in response to the illumination. In some examples, the reflected light may be analyzed to determine a spectral profile of the object. The device may further include a structure applied to the substrate adjacent to the photo detectors, where the structure may be configured to reduce direct light transmission from the light sources to the photo detectors. The structure may include a deposited material, a protrusion, and/or a recession on the surface of the substrate, for example.
Abstract:
An optical device includes: a diffraction grating; a depolarization plate containing a birefringent material to eliminate polarization dependency of the diffraction grating; and an optical corrector configured to optically correct diffraction angle deviation of diffracted light due to diffraction at the diffraction grating. The optical corrector may be configured to bend back the diffracted light diffracted by the diffraction grating to re-emit the light to the diffraction grating.
Abstract:
A spectroscopic analysis device based on Brillouin dynamic grating and its analysis method, which provides high resolution and large measuring range at the same time. The device includes a laser device (1), a fiber optic coupler device (2), a first fiber amplifier device (3), a first isolator (4), a first polarization controller (5), a second polarization controller (6), a single-sideband modulation modulator (7), a second fiber amplifier device (8), a second isolator (9), a third polarization controller (10), a single-mode fiber (11), a polarization beam splitter (12), a circulator (13), a photodetector (14), a data acquisition card (15), a fourth polarization controller (16) and a microwave source (17). The method utilizes the Brillouin scattering of two beams of pump light in optical fiber forming Brillouin dynamic gratings as the spectral element and achieve a sub-MHz resolution.
Abstract:
A method and a system for measuring an optical asynchronous sample signal. The system for measuring an optical asynchronous sampling signal comprises a pulsed optical source capable of emitting two optical pulse sequences with different repetition frequencies, a signal optical path, a reference optical path, and a detection device. Since the optical asynchronous sampling signal can be measured by merely using one pulsed optical source, the complexity and cost of the system are reduced. A multi-frequency optical comb system using the pulsed optical source and a method for implementing the multi-frequency optical comb are further disclosed.
Abstract:
A birefringent filter includes an EM directing element in optical alignment with a first surface of the birefringent plate. A polarimetric imager includes a birefringent filter including a birefringent plate formed of a birefringent material and an EM directing element in optical alignment with a first surface of the birefringent plate. The imager further includes a detector in optical alignment with a second surface of the birefringent plate. A projection system includes an EM directing element and a birefringent filter. The filter includes (1) a birefringent plate formed of a birefringent material and having a first surface in optical alignment with the emissions source, and (2) an EM directing element in optical alignment with a second surface of the birefringent plate.
Abstract:
A pseudo-active chemical imaging sensor including irradiative transient heating, temperature nonequilibrium thermal luminescence spectroscopy, differential hyperspectral imaging, and artificial neural network technologies integrated together. The sensor may be applied to the terrestrial chemical contamination problem, where the interstitial contaminant compounds of detection interest (analytes) comprise liquid chemical warfare agents, their various derivative condensed phase compounds, and other material of a life-threatening nature. The sensor measures and processes a dynamic pattern of absorptive-emissive middle infrared molecular signature spectra of subject analytes to perform its chemical imaging and standoff detection functions successfully.
Abstract:
A method for utilizing polarization as a scheme for fluorescence removal from UV Raman spectra collected in a standoff detection scheme has been invented. In this scheme, a linearly polarized ultraviolet (UV) laser interacts with a material on a surface or in a container. The material generates Raman scattering with polarization contributions relative to that of the laser. The material possibly fluoresces as well, but the fluorescence is generally unpolarized. By subtracting a scaled version of the perpendicular component from the parallel component of the returned signal both relative to the laser source polarization—it is possible to generate a spectrum that is fluorescence free and contains the strongest features of the Raman scattered light.