Abstract:
A light source and a method for its use in an optical sensor are provided, the light source including a resistively heated element. The light source includes a power circuit configured to provide a pulse width modulated voltage to the resistively heated element, the pulse width modulated voltage including: a duty cycle with a first voltage; and a pulse period including a period with a second voltage, wherein: the duty cycle, the first voltage, and the pulse period are selected so that the resistively heated element is heated to a first temperature; and the first temperature is selected to emit black body radiation in a continuum spectral range. Also provided is an optical sensor for determining a chemical composition including a light source as above.
Abstract:
Provided are methods and systems for concurrent imaging at multiple wavelengths. In one aspect, a hyperspectral/multispectral imaging device includes a lens configured to receive light backscattered by an object, a plurality of photo-sensors, a plurality of bandpass filters covering respective photo-sensors, where each bandpass filter is configured to allow a different respective spectral band to pass through the filter, and a plurality of beam splitters in optical communication with the lens and the photo-sensors, where each beam splitter splits the light received by the lens into a plurality of optical paths, each path configured to direct light to a corresponding photo-sensor through the bandpass filter corresponding to the respective photo-sensor.
Abstract:
Contrary to conventional wisdom, which holds that light-emitting diodes (LEDs) should be cooled to increase efficiency, the LEDs disclosed herein are heated to increase efficiency. Heating an LED operating at low forward bias voltage (e.g., V
Abstract:
In an optical synthesizer, a laser source outputs a laser. An optical modulator modulates the frequency of the laser to output a light including a first frequency component. An optical filter extracts the first frequency component from the output of the optical modulator. An optical comb generator generates an optical comb based on the laser and a predetermined driving signal. A variable-wavelength narrowband filter extracts a second frequency component from the optical comb. An optical-electric converter outputs an electric signal based on the frequency difference between the first and second frequency components.
Abstract:
Systems and methods of the present disclosure are directed to detecting species within a fluid using a multi-pass absorption cell and a spectrometer. The absorption cell includes a plurality of mirrors arranged in a manner such that a detection light traverses multiple passes through the fluid within the absorption cell. In some implementations, the detection light is reflected by the plurality of mirrors to form optical paths in more than one plane. The system also includes an electronic unit configured to receive and process spectral data from the spectrometer. In some implementations, the electronic unit communicates with at least one computational unit over a communication interface to send a portion of the spectral data for processing. The electronic unit may also receive processed data from the computational unit.
Abstract:
An infrared light source includes a single-crystal ceramic element having at least two electrical contacts disposed thereon, such that the single-crystal ceramic element is stimulated to emit infrared light upon application of an electrical current through the at least two electrical contacts. The infrared light source further includes an evacuated housing enclosing the single-crystal ceramic element, the evacuated housing including an infrared transparent window.
Abstract:
Spectrally analyzing an unknown sample (10A) includes (i) providing a spatially homogeneous region (10B) of the unknown sample (10A); (ii) directing a plurality of interrogation beams (16) at the spatially homogeneous region (10B) with a laser source (14), (iii) acquiring a separate output image (245) while the unknown sample (10A) is illuminated by each of the interrogation beams (16) with an image sensor (26A); and (iv) analyzing less than fifty output images (245) to analyze whether a characteristic is present in the unknown sample (10A) with a control system (28) that includes a processor. Each of the interrogation beams (16) is nominally monochromatic and has a different interrogation wavelength that is in the mid-infrared spectral range.
Abstract:
A wearable device for use with a smart phone or tablet includes a measurement device having a plurality of LEDs generating a near-infrared input optical beam that measures physiological parameters. The measurement device includes lenses configured to receive and to deliver the input beam to skin which reflects the beam. The measurement device includes a reflective surface configured to receive and redirect the light from the skin, and a receiver configured to receive the reflected beam. The light source is configured to increase a signal-to-noise ratio of the input beam reflected from the skin by increasing the light intensity from the LEDs and modulation of the LEDs. The measurement device is configured to generate an output signal representing a non-invasive measurement on blood contained within the skin. The wearable device is configured to wirelessly communicate with the smart phone or tablet which receives and processes the output signal.
Abstract:
A measurement system includes semiconductor light sources generating an input beam, optical amplifiers receiving the input beam and delivering an intermediate beam, and fused silica fibers with core diameters less than 400 microns receiving and delivering the intermediate beam to the fibers forming a first optical beam. A nonlinear element receives the first optical beam and broadens the spectrum to at least 10 nm through a nonlinear effect to form the output optical beam which includes a near-infrared wavelength of 700-2500 nm. A measurement apparatus is configured to receive the output optical beam and deliver it to a sample to generate a spectroscopy output beam. A receiver receives the spectroscopy output beam having a bandwidth of at least 10 nm and processes the beam to generate an output signal, wherein the light source and the receiver are remote from the sample, and wherein the sample comprises plastics or food industry goods.
Abstract:
System and method configured to operate under conditions when the object being imaged destroys or negates the information which otherwise allows the user to take advantage of optical parallax, configured to elicit luminescence from the same targets in the object as a result of irradiation of these targets with pump light at different, respectively corresponding wavelengths, and acquire optical data from so-illuminated targets through the very same optical path to image the object at different wavelengths. One embodiment enables acquisition, by the same optical detector and from the same object, of imaging data that includes a reflectance image and multiple fluorescence-based images caused by light at different wavelengths, to assess difference in depths of locations of targets within the object.