Abstract:
An emitter has a basic unit with at least one emission surface. Accordingly, the basic unit has deep structuring in a region of the at least one emission surface. More specifically, the basic unit has the deep structuring on both a front side and on a rear side in the region of the emission surface for improving emission properties.
Abstract:
A field emission device includes a substrate and a plurality of wires embedded in the substrate. The plurality of wires has at least a field emitter cathode wire; a control grid wire array; and a collector anode array. The field emitter cathode wire, control grid wire array, and collector anode array are embedded in and extend through a nonconductive substrate matrix. A method for making a vacuum field emission device is also disclosed.
Abstract:
A mechanically stable and oriented scanning probe tip comprising a carbon nanotube having a base with gradually decreasing diameter, with a sharp tip at the probe tip. Such a tip or an array of tips is produced by depositing a catalyst metal film on a substrate (10 & 12 in FIG. 1(a)), depositing a carbon dot (14 in FIG. 1(b)) on the catalyst metal film, etching away the catalyst metal film (FIG. 1(c)) not masked by the carbon dot, removing the carbon dot from the catalyst metal film to expose the catalyst metal film (FIG. 1(d)), and growing a carbon nanotube probe tip on the catalyst film (16 in FIG. 1(e)). The carbon probe tips can be straight, angled, or sharply bent and have various technical applications.
Abstract:
A field emission device having improved properties and which finds use in display devices, such as a flat panel displays. Known devices and displays suffer from problems such as complexity of fabrication and limited color gamut. The present device provides a field emission backplate which is made from a substantially semiconductor based material and has a plurality of grown tips. The device also includes at least one electro-luminescent or photo-luminescent material having a fluorescent material such as a fluorescent dye doped material chemically attached thereto.
Abstract:
A solid state sub-nanometer-scale electron beam emitter comprising a multi-layered structure having a nano-tip electron emitter and tunnel emission junction formed on substrate, an initial electron beam extraction electrode, a “nano-sandwich Einzel” electrode, and a topmost protective layer.
Abstract:
A field emission device (1) may be used for emitting electrons in, for example, a field emission display (FED). Field emission tips (40) are used for the emitting of electrons in the field emission device (1). In operation of the field emission device (1) a voltage is applied between a first electrode (4) having electrical contact with the field emission tip (40) and a second electrode (34) to make the field emission tip (40) emit electrons. To form a field emission tip (40) a layer of liquid material is applied on a substrate (2) provided with the first electrode (4). The layer of liquid material is embossed with a patterned stamp and subsequently cured to form a field emission tip structure (20). A conductive film (38) is applied on the field emission tip structure (20) to form a field emission tip (40) that has electrical contact with the first electrode (4).
Abstract:
An electron emission device and/or an electron emission display using the same includes a beam-focusing structure using an insulating layer. The beam-focusing structure has a first insulating layer formed on a plate. The first insulating layer has a predetermined thickness, and is formed with a first hole. A first electrode is formed on the first insulating layer and extending into the first hole. An electron emission portion is formed in the first hole and connected to the first electrode. A second insulating layer is formed on the first electrode and is also formed with a second hole through which the electron emission portion is at least partially exposed. A second electrode is formed on the second insulating layer. In the electron emission device and/or the electron emission display, an electric field between the first electrode and the second electrode causes the electron emission portion to emit an electron beam and focuses the electron beam from the electron emission portion.
Abstract:
Diamond microtip field emitters are used in triode vacuum microelectronic devices, sensors and displays. Diamond triode devices having integral anode and grid structures can be fabricated. Ultra-sharp tips are formed on the emitters in a fabrication process in which diamond is deposited into mold cavities in a two-step deposition sequence. During deposition of the diamond, the carbon graphite content is carefully controlled to enhance emission performance. The tips or the emitters are treated by post-fabrication processes to further enhance performance.
Abstract:
A field emission device (FED) and a method for fabricating the FED are provided. The FED includes micro-tips with nano-sized surface features. Due to the micro-tips as a collection of a large number of nano-tips, the FED is operable at low gate turn-on voltages with high emission current densities, thereby lowering power consumption.
Abstract:
A field emission device (FED) and a method for fabricating the FED are provided. The FED includes micro-tips with nano-sized surface features. Due to the micro-tips as a collection of a large number of nano-tips, the FED is operable at low gate turn-on voltages with high emission current densities, thereby lowering power consumption.