Abstract:
Boron nitride nanotube paste compositions, electron emission sources including the same, electron emission devices including the same and backlight units and electron emission display devices including the same are provided. A boron nitride nanotube paste composition includes about 100 parts by weight boron nitride nanotubes, from about 500 to about 2000 parts by weight glass frit, from about 1000 to about 2000 parts by weight filler, from about 2000 to about 4000 parts by weight organic solvent, and from about 4000 to about 6000 parts by weight polymer binder. Electron emission devices including the boron nitride nanotube electron emission sources have longer lifespan and improved uniformity among pixels.
Abstract:
A filament assembly configured for generating electrons and including nanoparticles and/or nanofilaments. The filament assembly is optionally incorporated an analytical systems such as a mass analyzer or x-ray source. The nanoparticles and/or nanofilaments are configured to produce improved electron generation, thermal stability, and/or other properties relative to the prior art. Methods of using the filament assembly are described.
Abstract:
An ion source for use in a mass spectrometer includes an electron emitter assembly configured to emit electron beams, wherein the electron emitter assembly comprises carbon nanotube bundles fixed to a substrate for emitting the electron beams, a first control grid configured to control emission of the electron beams, and a second control grid configured to control energies of the electron beams; an ionization chamber having an electron-beam inlet to allow the electron beams to enter the ionization chamber, a sample inlet for sample introduction, and an ion-beam outlet to provide an exit for ionized sample molecules; an electron lens disposed between the electron emitter assembly and the ionization chamber to focus the electron beams; and at least one electrode disposed proximate the ion-beam outlet to focus the ionized sample molecules exiting the ionization chamber.
Abstract:
A vacuum electron tube comprises at least one electron-emitting cathode and at least one anode arranged in a vacuum chamber, the cathode having a planar structure comprising a substrate comprising a conductive material, a plurality of nanotube or nanowire elements electrically insulated from the substrate, the longitudinal axis of the nanotube or nanowire elements substantially parallel to the plane of the substrate, and at least one first connector electrically linked to at least one nanotube or nanowire element so as to be able to apply a first electrical potential to the nanowire or nanotube element.
Abstract:
A field-emission electron gun including an electron emission tip, an extractor anode, and a mechanism creating an electric-potential difference between the emission tip and the extractor anode. The emission tip includes a metal tip and an end cone produced by chemical vapor deposition on a nanofilament, the cone being aligned and welded onto the metal tip. The electron gun can be used for a transmission electron microscope.
Abstract:
An electron emission device and a method of manufacturing the same are provided. The electron emission device includes i) a hydrophilic resin substrate and ii) carbon nano tubes that are positioned on the resin substrate. Surface roughness Ra of the resin substrate is 7.3 μm to 9.75 μm.
Abstract:
Suspended nanotubes are used to capture and ionize neutral chemical units, such as individual atoms, molecules, and condensates, with excellent efficiency and sensitivity. Applying a voltage to the nanotube(s) (with respect to a grounding surface) creates an attractive potential between a polarizable neutral chemical unit and the nanotube that varies as 1/r2, where r is the unit's distance from the nanotube. An atom approaching the nanotube with a sub-threshold angular momentum is captured by the potential and eventually spirals towards the nanotube. The atom ionizes as in comes into close proximity with a sidewall of the nanotube, creating an ion whose polarity matches the polarity of the electric potential of the nanotube. Repulsive forces eject the ion, which can be detected more easily than a neutral chemical unit. Suspended nanotubes can be used to detect small numbers of neutral chemical units (e.g., single atoms) for applications in sensing and interferometry.
Abstract:
A method for fabricating field emission cathode, a field emission cathode, and a field emission lighting source are provided. The method includes: forming a catalyst crystallite nucleus layer on the surface of cathode substrate by self-assembly of a noble metal catalyst, growing a composited nano carbon material on the cathode substrate by using a TCVD process, in which the composited nano carbon material includes coil carbon nano tubes and coil carbon nano fibers. The measured quantity of total coil carbon nano tubes and coil carbon nano fibers is higher than 40%. The field emission cathode is fabricated by the aforementioned method, and the field emission lighting source includes the aforementioned field emission cathode.
Abstract:
A field-emission electron gun including an electron emission tip, an extractor anode, and a mechanism creating an electric-potential difference between the emission tip and the extractor anode. The emission tip includes a metal tip and an end cone produced by chemical vapor deposition on a nanofilament, the cone being aligned and welded onto the metal tip. The electron gun can be used for a transmission electron microscope.
Abstract:
A method for surface treating a cold cathode includes the following steps. A cold cathode is provided and the cold cathode includes a plurality of field emitters. A liquid glue is placed on a surface of the cold cathode. The liquid glue is cured to form solid glue on the surface of the cold cathode. The solid glue is removed to allow the plurality of field emitters to stand upright.