Abstract:
An electron beam apparatus prevents a rapid increase of dosage caused by stoppage or deceleration of movement and protects the specimen when the specimen is irradiated with the electron beam while the specimen and the electron beam are being relatively moved. An electron beam source outputs the electron beam. The dosage of electron beam irradiated per unit area of the specimen is measured. A storage section stores a predetermined dosage per unit area in memory for the specimen. A detector detects over exposure of the electron beam when the measured dosage per unit area is greater than the dosage per unit area stored in the storage section. A controller controls the electron beam source to reduce the dosage per unit area of the electron beam lower than the dosage per unit area stored in the storage section.
Abstract:
A charged particle beam apparatus has a plurality of charged particle beam generating systems disposed in a chamber and a neutralizing coil for neutralizing a first charged particle beam generating system to control the magnetic field in the path of a charged particle beam generated by a second charged particle beam system. The first charged particle beam generating system comprises one or more electron beam lens barrels, and the second charged particle beam generating system comprises one or more focused ion beam lens barrels. The neutralizing coil controls an excitation current of the objective lens of a first electron beam lens barrel.
Abstract:
Shielding devices and methods are disclosed for canceling the effects of external magnetic fields that otherwise would interfere with proper functioning of a charged-particle-beam (CPB) optical system inside a column. In one embodiment, openings and other disruptions in the continuity of the column are flanked by respective coil sets. Each coil set includes multiple coils that are individually electrically energized. The coils can be inside the column, outside the column, or both inside and outside. The magnitude and direction of the respective composite magnetic fields generated by the coil sets can be changed by adjusting the respective electrical currents flowing through the individual coils. Thus, the magnitude and direction of the composite magnetic field can be manipulated as required to cancel the effects of the interfering magnetic field. In addition, the column can be situated within a shield of an anisotropic magnetic material in which the magnetic flux most readily flows in selected directions. Thus, the flux of an external magnetic field that otherwise would leak into a column is caused to become aligned, in a respective portion of the shield, in the axial direction, thereby reducing its horizontal component.
Abstract:
A wafer processing apparatus comprises a vacuum processing chamber, and a wafer holder disposed within the vacuum processing chamber to hold a wafer to be processed fixedly thereon by electrostatic attraction. A cooling or heating gas is supplied into the space between the surface of the wafer holder and the backside of a wafer set on the wafer holder to cool or heat the wafer. In case the electrostatic attraction disappears accidentally due to, for example, power failure, the cooling or heating gas in the space between the surface of the wafer holder and the backside of the wafer set on the wafer holder is discharged quickly upon the disappearance of the electrostatic attraction between the wafer holder and the wafer to prevent the wafer being caused to float and being dislocated by the pressure of the cooling or heating gas existing in the space between the surface of the wafer holder and the backside of the wafer.
Abstract:
A plasma substrate treatment apparatus according to one embodiment of the present invention comprises: a remote plasma generator for generating plasma and an active species; an upper chamber having an opening connected to an output port of the remote plasma generator and receiving and diffusing the active species of the remote plasma generator; a first baffle disposed on the opening of the upper chamber; a lower chamber receiving the diffused active species from the upper chamber; a second baffle partitioning the upper chamber and the lower chamber and transmitting the active species; a substrate holder for supporting a substrate disposed in the lower chamber; and an RF power source applying RF power to the substrate holder.
Abstract:
Provided is a substrate processing method in which a liner layer is formed on the photo resist underlayer, followed by forming SiO2 patterning layer thereon. According to the embodiment, the liner layer is formed by providing a silicon-containing layer, followed by inert gas activated by providing a high frequency RF power and a low frequency RF power together simultaneously. Thus, a loss of photo resist underlayer may be minimized within the range that does not affect the device performance and the wet etch properties and the width between fine patterns may be kept constant while the thickness of the liner layer is thin.
Abstract:
A plasma processing apparatus 100, which has an impact on global warming and allows for high-throughput plasma processing, includes a chamber 1 in which plasma is generated, a mounting table 2 disposed in the chamber, wherein a substrate S is mounted on the mounting table 2, and a gas supply source 3 (3a to 3d) for supplying gas for generating plasma in the chamber, wherein the substrate is subjected to deep etching by executing alternately and repeatedly an etching process S2 of etching the substrate by using plasma and a protective film deposition process S3 of depositing a protective film in a recess formed through the etching process by using plasma. It is characterized in that, in the protective film deposition process S3, a mixed gas of C4F8 and 2,3,3,3-tetrafluoropropene is supplied from the gas supply sources 3b, 3c into the chamber as gas supplied for generating plasma.
Abstract:
Probe landing is detected by detecting a change in a vibration of the probe in a plane substantially parallel to the work piece surface as the probe is lowered toward the work piece. The vibration may be observed, for example, by acquiring multiple electron microscope images of the probe as it moves and analyzing the images the determine a characteristic, such as the amplitude of the vibration. When the probe contacts the work piece surface, the friction between the probe tip and the work piece surface will change the characteristic of the vibration, which can be detected to indicate that the probe has landed.
Abstract:
A component of a plasma processing chamber having a protective liquid layer on a plasma exposed surface of the component The protective liquid layer can be replenished by supplying a liquid to a liquid channel and delivering the liquid through liquid feed passages in the component. The component can be an edge ring which surrounds a semiconductor substrate supported on a substrate support in a plasma processing apparatus wherein plasma is generated and used to process the semiconductor substrate. Alternatively, the protective liquid layer can be cured or cooled sufficiently to form a solid protective layer.
Abstract:
An analytical cell includes first and second holders. The first and second holders each contain a substrate having a through-hole and a transmission membrane with an electron beam permeability so as to cover the through-hole. The first and second holders are stacked to form an overlapping portion such that the transmission membranes face each other and that an inner space therein containing the electrolytic solution is sealed. The through-holes face each other across the transmission membranes to form an observation window. Negative and positive electrode active materials are separated from each other and contact the electrolytic solution in the observation window. A transmission body containing an electron beam permeable solid is formed between at least one of the negative and positive electrode active materials and the transmission membrane.