Abstract:
Electron emitters for x-ray tubes. In one example embodiment, an electron emitter for an x-ray tube includes an electron filament and a plurality of electrical leads. The electron filament defines a plurality of openings. Each lead is positioned so as to extend through one of the openings and each lead is mechanically and electrically connected to the filament proximate the opening without the presence of braze material.
Abstract:
According to one embodiment, an X-ray tube includes a cathode, an anode target and an envelope. The cathode includes an insulating member, a conductive line, a pin assembly, a filament, a focusing electrode, and a terminal assembly. The conductive line is formed on the insulating member. The pin assembly includes a pin and a first sleeve. The terminal assembly is fixed to the insulating member, is supporting the filament, and is electrically connecting the filament to the conductive line.
Abstract:
A multiradiation generation apparatus according to the present invention includes a plurality of radiation sources arranged in a row. Each of the radiation sources includes an electron source configured to emit electrons and a target unit configured to generate radiation upon receiving electrons emitted from the electron source. At least one of the radiation sources is a dual-purpose radiation source used for both tomosynthesis imaging and non-tomosynthesis imaging, and the other radiation sources are single-purpose radiation sources used only for tomosynthesis imaging.
Abstract:
A mammograph is provided. The mammograph includes a source of X-rays; a detector of X-rays, the source being configured to emit at least one beam of X-rays to the detector; and an optic control device configured to control the direction of X-rays emitted by the source such that the X-rays emitted by the source are substantially parallel to one another.
Abstract:
An imaging module includes a plurality of cathodes and respective gates, each cathode configured to generate a separate beam of electrons directed across a vacuum chamber and each gate matched to at least one respective cathode to enable and disable each separate beam of electrons from being directed across the vacuum chamber. A target anode is fixed within the vacuum chamber and arranged to receive the separate beam of electrons from each of the plurality of cathodes and, therefrom, generate a beam of x-rays. A deflection system is arranged between the plurality of cathodes and the target anode to generate a variable magnetic field to control a path followed by each of the separate beams of electrons to the target anode.
Abstract:
Provided is a Schottky emitter having the conical end with a radius of curvature of 2.0 μm on the emission side of an electron beam. Since a radius of curvature is 1 μm or more, a focal length of an electron gun can be longer than in a conventional practice wherein a radius of curvature is in the range of from 0.5 μm to not more than 0.6 μm. The focal length was found to be roughly proportional to the radius of the curvature. Since the angular current intensity (the beam current per unit solid angle) is proportional to square of the electron gun focal length, the former can be improved by an order of magnitude within a practicable increase in the emitter radius. A higher angular current intensity means a larger beam current available from the electron gun and the invention enables the Schottky emitters to be used in applications which require relatively high beam current of microampere regime such as microfocus X-ray tube, electron probe micro-analyzer, and electron beam lithography system.
Abstract:
Embodiments of the disclosure relate to electron emitters for use in conjunction with X-ray devices. In one embodiment, the emitter features a round emission area capable of emitting electrons when heated, wherein the round emission area comprises at least one of a gap, a channel, or a combination thereof that separates a first portion of the round emission area from a second portion of the round emission area and permits thermal expansion of the first portion and the second portion within the at least one gap or channel without permitting the first portion and the second portion to touch one another. The two electrically conductive legs coupled to the surface at respective locations outside the round emission area and that are capable of supplying current to the round emission area.
Abstract:
Disclosed herein are a high-voltage generator (120) for an x-ray source, an x-ray gun, an electron beam apparatus, a rotary vacuum seal, a target assembly for an x-ray source, a rotary x-ray emission target (500), and an x-ray source. These various aspects may separately and/or together enable the construction of an x-ray source which can operate at energies of up to 500 kV and beyond, which is suitable for use in commercial and research x-ray applications such as computerised tomography. In particular, the high-voltage generator includes a shield electrode (123a, 123b) electrically connected intermediate of a first voltage multiplier (122a, 122b) and a second voltage multiplier (122b, 122c). The electron beam apparatus includes control photodetectors (202a, 202b—not shown) and photo emitters (201a, 202a) having a transparent conductive shield (203a and 203b, 203c—not shown) arranged therebetween. The rotary vacuum seal includes a pumpable chamber (302) at a position intermediate between high-pressure and low-pressure ends of a bore (301) for a rotating shaft (401). The rotary target assembly is configured such that when a torque between a bearing housing (403) and a vacuum housing exceeds a predetermined torque, the bearing housing rotates relative to the vacuum housing. The rotary x-ray emission target (500) has a plurality of target plates (560) supported on a hub, the plates being arranged on the hub to provide an annular target region about an axis rotation of the hub. The x-ray gun is provided with a shield electrode (123a) maintained at a potential difference relative to the x-ray target different to the electron beam emission cathode.
Abstract:
The present invention discloses a digital X-ray source. The digital X-ray source includes an X-ray generation unit that emits X-rays, wherein the X-ray generation unit includes a cathode electrode; an emitter formed above the cathode electrode; an anode electrode located above the emitter; a gate electrode located between the emitter and the anode electrode; first and second focusing electrodes located between the emitter and the anode electrode; and an electrode connecting unit configured to include one or more insulating tubes capable of fixing and adjusting the locations of the gate electrode and the first and second focusing electrodes on the cathode electrode, and also configured to individually insulate and connect the cathode electrode, the gate electrode and the first and second focusing electrodes from and with electric lines
Abstract:
This X-ray tube device includes an anode and a cathode including an emitter emitting an electron to the anode. The emitter includes an electron emission portion in a flat plate shape, a pair of terminal portions extending from the electron emission portion, connected to an electrode, and a supporting portion provided separately from the terminal portions, insulated from the electrode, supporting the electron emission portion.