Abstract:
The present invention provides a printed circuit board, which includes a dielectric substrate having via holes formed in the thickness direction, and a conductor including a conductive filler is filled in the via holes. The dielectric substrate has patterned wiring layers on both surfaces, and the wiring layers are connected electrically with each other by the conductor. The dielectric substrate is made of a glass cloth or a glass nonwoven fabric impregnated with a thermosetting epoxy resin mixed with fine particles, and the conductive filler in the conductor has an average particle diameter larger than that of the fine particles. Accordingly, the printed circuit board has an improved moisture resistance as a whole and also excellent connection reliability and repair resistance. In addition, the dielectric substrate of the printed circuit board has an improved mechanical strength such as flexural rigidity. The present invention also provides a method of manufacturing such a printed circuit board.
Abstract:
A solder powder comprises solder particles having a distribution such that the number of particles having a particle diameter of 20 nullm or less is 30% or less, wherein the oxygen content is 500 ppm or less. A flux for solder paste comprises an organic acid component consisting of an organic acid ester and an ester decomposer catalyst, an organic halogen compound, a reducing agent and a resin component. A solder paste mainly comprises a flux and a solder powder, wherein the water content of the solder paste is 0.5% by weight or less.
Abstract:
The present invention relates to a method for forming bumps on a substrate provided with electrode pads. The method includes providing a mask having openings corresponding to the electrode pads, filling each of the openings with a solder paste, and heat treating the solder paste, wherein the solder paste includes solder powder. Preferably, the solder powder contains no more than 10 wt % of particles whose diameter is greater than the thickness of the mask and no more than 1.5 times this thickness. Preferably, the solder powder contains no more than 10 wt % of particles whose diameter is not less than 40% the diameter of the opening portions, or no less than 30 wt % of particles whose diameter is 40 to 100% the thickness of the mask.
Abstract:
The present invention relates to a bump formation method, comprising the steps of providing a mask, in which a plurality of openings have been formed corresponding to a plurality of electrode pads, to a substrate provided with this plurality of electrode pads, filling the openings with a solder paste, and heat treating the solder paste. The solder paste contains a solder powder. This solder powder is one that contains no more than 10 wt % particles whose diameter is greater than the thickness of the mask and no more than 1.5 times this thickness. Preferably, this solder powder is one that contains no more than 10 wt % particles whose diameter is greater than 40% of the diameter of the openings, or one that contains no more than 30 wt % particles whose diameter is 40 to 100% the thickness of the mask.
Abstract:
A multilayer circuit board having three or more conductive layers, with at least two conductive layers electrically and mechanically connected by an interconnecting adhesive layer, is disclosed. The interconnecting adhesive layer comprises a conductive adhesive material having a plurality of deformable, heat fusible metallic particles dispersed substantially throughout a non-conductive adhesive. The fabricated multilayer circuit boards have interconnections which are reliable, heat resistant, and capable of withstanding thermal cycling and typical circuit board finishing and assembly processes.
Abstract:
A wiring substrate includes a first build-up part including an insulating layer and a conductor layer, and a second build-up part laminated on the first build-up part and including an insulating layer and a conductor layer. The minimum width and minimum inter-wiring distance of wirings in the first build-up part are smaller than the minimum width and minimum inter-wiring distance of wirings in the second build-up part. The insulating layer in the first build-up part includes resin and inorganic particles including first inorganic particles partially embedded in the resin and second inorganic particles completely embedded in the resin such that the first inorganic particles have first portions protruding from the resin and second portions embedded in the resin, respectively. The insulating layer of the first build-up part has a surface covered by the conductor layer and including a surface of the resin and exposed surfaces of the first portions.
Abstract:
A method for filling a via on a printed circuit board formulates a paste as a dispersion of copper particulate that includes nanocopper particles in a solvent and a binder and depositing the paste into a via cavity formed in the printed circuit board. Heating the paste-filled cavity removes most of the solvent. The method sinters the deposited paste in the via cavity, planarizes the sintered via, and overplates the filled via with copper.
Abstract:
Provided is a silver powder which has an appropriate viscosity range at the time of paste production, can be easily kneaded, and prevents the occurrence of flakes. The silver powder to be used has a specific surface area ratio SAB/SAS of 0.5 to 0.9, wherein SAB is a specific surface area measured by the BET method, and SAS is a specific surface area calculated from a mean primary-particle diameter DS measured with a scanning electron microscope. Furthermore, the silver powder preferably has a degree of aggregation of 1.5 to 5.0, the degree being obtained in such a manner that a volume median diameter D50 measured by laser diffraction scattering is divided by the foregoing Ds.
Abstract:
A wiring board includes: an inorganic insulating layer having a via hole formed so as to penetrate the inorganic insulating layer in a thickness direction thereof; a conductive layer disposed on the inorganic insulating layer; and a via conductor which adheres to an inner wall of the via hole and is connected with the conductive layer. The inorganic insulating layer includes a first section including a plurality of inorganic insulating particles partly connected to each other, and a resin portion located in gaps between the inorganic insulating particles, and a second section which is interposed between the first section and the via conductor, including a plurality of inorganic insulating particles partly connected to each other, and a conducting portion composed of part of the via conductor which is located in gaps between the inorganic insulating particles.
Abstract:
A silicon nitride substrate comprises a substrate comprising a silicon nitride sintered body, and a plurality of granular bodies containing silicon and integrated to a principal surface of the substrate, wherein a plurality of needle crystals or column crystals comprising mainly silicon nitride are extended from a portion of the granular bodies. A brazing material is applied to a principal surface of the substrate, and a circuit member and a heat radiation member are arranged on the applied brazing material, and bonded by heating. Because of a plurality of granular bodies integrated to the principal surface of the substrate, and a plurality of the needle crystals or the column crystals extended from a portion of the granular bodies, a high anchor effect is produced so that the circuit member and the heat radiation member are firmly bonded to the silicon nitride substrate.